ENGINEERED HUMAN CELLS: SAY NOT TO SEPSIS

iGEM 2006 Slovenija

We are from... Slovenia

The Team

Engineering of the logic of mammalian cells

 More similarities than differences in comparison to prokaryotic systems

 Disadvantages: more complex, slower and more expensive to work with

 Opportunities: understanding of complex systems, relevant for potential medical application

What is Sepsis?

 Strikes 750,000 people per year in the US, similar numbers for the EU

 In 1 of 5 cases it ends with death of the patient

 Among the top 10 causes of death in the US

What is Sepsis

- Excessive
 inflammatory
 response triggered
 by pathogens
- Widespread activation of inflammation and coagulation pathways

What is Sepsis

- Results in severe organ failure
- Excessive reaction of host to the pathogen infection rather than bacteria causing pathology

Toll-like receptors sense the presence of pathogens

 main sensors of the innate immune response

Toll-like receptor molecules:

- 11 different human membrane receptores
- recognize different molecules distinctive for pathogens

TLRs and their agonists

Bacteria				Viruses			Protozoa & Fungi	
Atypical LPS Lipoprotein Lipopeptide Lipoarabinomannan Lipotechoic Acid Modulin Porin Peptidoglycan LPS Flagell	Bacterial n CpG DNA	UPEC	dsRNA	RSV F protein	ssRNA	Viral CpG DNA	Zymosan GIPLs Glycolipids	Profilin- like protein
E E E	, Ę	E.	Ę	Ę	Ę	Ę	<pre>S</pre>	Ê
	ŕ	ľ	2	r	r	Ţ	2	ſ
TLR1/2/6 TLR4 TLR5	TLR9	TLR11	TLR3	TLR4	TLR7/8	TLR9	TLR2/6	TLR11
NF-κB activation			NF-κB activation			NF-κB activation		
Proinflammatory			IRF3/7 activation			Proinflammatory		
cytokines			Tyj IFN	Type I interferons & IFN-inducible genes				
			Proinflammatory cytokines					

"All Paths lead through MyD88"

Our Project

Basic concept:

Inhibit the excessive cellular activation without of completely abolishing the cellular responsiveness

Implementation:

Insert into mammalian cells a feedback device with inhibitor (dnMyD88) that would repress the signaling of TLR pathway for a limited period of time.

Mathematical Model

Simplified model of TLR signaling

Model with additional dnMyD88 feedback

Normal cellular response to repeated stimulus 1.8 Inflammatory mediators 1.6 1.4 12 1.0 Cytoplasmic NF- κ B 1.5 2.4 1.4 8.3 Nuclear NF-κB 0.00 110 300 2760 a. 100 100 Test

Our Parts

Registration number	Part's Name
BBa J52008	rluc
<u>BBa_J52010</u>	NFĸB
<u>BBa J52011</u>	dnMyD88-linker-rLuc
<u>BBa J52012</u>	rluc-linker-PEST191
<u>BBa J52013</u>	dnMyD88-linker-rluc-link-pest191
<u>BBa J52014</u>	NFkB+dnMyD88-linker-rLuc
<u>BBa_J52016</u>	eukaryotic terminator
<u>BBa_J52017</u>	eukaryotic terminator vector
<u>BBa_J52018</u>	NFkB+rLuc
<u>BBa_J52019</u>	dnTRAF6
BBa_J52021	dnTRAF6-linker-GFP
BBa J52022	NFkB+dnTRAF6-linker-GFP
BBa J52023	NFkB+rLuc-linker-PEST191

<u>BBa_J52024</u>	NFkB+dnMyD88-linker-rLuc-link-PEST191
<u>BBa J52026</u>	dnMyD88-linker-GFP
<u>BBa J52027</u>	NFkB+dnMyD88-linker-GFP
BBa_J52028	GFP-PEST191
<u>BBa J52029</u>	NFkB+GFP-PEST191
<u>BBa J52034</u>	CMV
<u>BBa J52035</u>	dnMyD88
<u>BBa J52036</u>	NFκB+dnMyD88
<u>BBa J52038</u>	CMV-rLuc
<u>BBa_J52039</u>	CMV+rLuc-linker-PEST191
<u>BBa J52040</u>	CMV+GFP-PEST191
BBa J52642	GFP
BBa_J52648	CMV+GFP

Building of BioBricks:

- Preparation of special fusion protein constructs with use of PCR Overlap Extension method
- Cloning in BioBrick plasmids with ccdB domain
- Construction of a modified vector with incorporated terminator
- Construction of final Composites using of BioBrick assembly technique

Transfection:

Cell line: HEK293

- don't express TLRs
- have conserved signaling pathway

Methods

Detection systems to monitor the time course of the cellular response:

- ELISA
- Flow Cytometry
- Luciferase Assay
- Microscopy

ELISA for the detection of free NF-kB peroxidase NF-κB biotin streptavidin

ELISA - Results

Flow Cytometry for the detection of phosphorylated ERK

Detection of transcriptional activation by luciferase assay

Dual luciferase assay

- Two different luciferase reporter enzymes
- The experimental reporter (NF-κB-fLuc)
- The constitutive reporter gene (CMV-rLuc)

Decreased steady state level and increased degradation rate of proteins with attached PEST tag

Inducible expression of protein under the control of NF-κB promoter

Why is there no inhibition ?

Polypeptide domain at the C-terminus of dnMyD88 prevents its interaction with TIR domain of TLR

If true, it should work without of the C-terminal addition, does it ?

Yes, the feedback device works!

Response of TLR5-transfected HEK293 cells to stimulation with flagellin

Conclusions

- We have transferred the BioBrick principle into the mammalian cells using transient transfection.
- We have succesfully implemented the feedback device that restricts the cellular activation in inflammation.
- Our constructed device mimicks the natural mechanism of tolerance only that it is activated faster.
- Simplified model of the TLR signaling qualitatively captures the main features of the signaling kinetics.

Prospects for the future

- Modulation of the lifetime of the inhibitor (and signal repression) based on the different rate of degradation by the addition of N-terminal PEST tag.
- Construction of BioBrick vectors for stable transfection (additional resistance for cell culture lines).

