

Solving the Pancake Problem with a Bacterial Computer

Missouri Western State University

Marian Broderick, Adam Brown, Trevor Butner, Lane Heard, Eric Jessen, Kelly Malloy, Brad Ogden

Faculty: Todd Eckdahl and Jeff Poet

Our Collaboration

Davidson College

- 3 Biology students
- 1 Math student
- 1 post-doc
- 2 faculty in Biology and Math

Missouri Western State University

- 5 Biology students
- 1 Math student
- 1 High School student
- 2 faculty in Biology and Math

Goals

- Have fun with synthetic biology
- Integrate math and biology
- Test iGEM collaboration among PUIs
- Solve a math problem using synthetic biology
- Design a device with downstream apps
- Have more fun with synthetic biology

The Classic Pancake Problem

- Scenario
 - Pancake chef at iHOP
 - Spatula in one hand
 - Plate with a stack of delicious pancakes of different sizes in other hand
 - No place to set down the plate
- Problem
 - The chef wishes to serve the pancakes arranged from smallest to largest
 - How many flips are needed?

A Simple Model

Given a particular permutation, we want to find the least number of flips needed to obtain the arrangement 1,2,3,4.

In our example, we consider 4,1,2,3.

The Burnt Pancake Problem

- Modification of the Classic Pancake Problem
 - Each pancake has one burnt side
- Problem
 - Sort pancakes from smallest to largest, all burnt-side down
 - How many flips are needed?

A Burnt Pancake Model

Same stack as earlier, same flips.

The bottom pancake is upside down so more flips are needed for the burnt pancake problem.

A Burnt Pancake Model (cont.)

We could continue from where we left off.

There could be a more efficient way.

A Burnt Pancake Model (cont.)

We want the most efficient way to change the stack. Below we use only three flips instead of five.

Hin-Hix Recombination

- Salmonella uses recombination to achieve antigenic variation
- Target DNA contains promoter that drives either of 2 flagellar protein genes

Image from: Nanassy OZ and Hughe K, 1998 *Genetics* 149: 1649-1663.

Recombination Requirements

- Cis Elements
 - hixL and hixR bracket target
 - Recombination enhancer
 - Negative supercoiling
- Trans Elements
 - Hin recombinase
 - Fis (factor for inversion stimulation)
 - HU (heat-unstable nucleoid protein)

Image from: Merickel SK, Haykinson MJ, and Johnson RC, 1998. *Genes Devel* 12, 2803-2816.

Burnt Pancake Implementation

- Use Hin recombinase system to generate the solution to the burnt pancake problem
- Types of burnt pancakes
 - Promoter
 - RBS / coding sequence
 - terminator
- Needed for flipping
 - Hin recombinase inducible expression cassette
 - HixC sites bracketing each pancake
 - RE may be needed
- Detection of flipping
 - Genetic detection using inducible antibiotic resistance or color

Which DNA Pancake Problem Can We Solve?

- Middle pancakes can be flipped, not just top
- This is modification of the burnt pancake problem
- A chef with two spatulas
 - lift top of stack
 - flip top portion of remaining stack
 - replace top of stack without flipping

2-Spatula Burnt Pancake Graph for 3 pancakes

• 3 pancakes \longrightarrow 48 possible stacks

three.

• Each stack is one flip away from six others

first only, second only, third only,

first and second, second and third, all

- The following slide shows Northern Hemisphere of the 2-spatula burnt pancake graph on a globe.
- Each stack is diametrically opposite the stack related by flipping all three pancakes.

Northern Hemisphere

Experimental Goals

- Design a system in *E. coli* to test whether flipping occurs
 - Single pancake constructs
 - Result of flipping is gene expression
- Determine whether flipping of multiple pancakes can occur
 - Two pancake constructs
 - Four pancake constructs
- Measure pathways and kinetics of flipping

A One Pancake Construct

- Hin expression under control of pLac
- Starting configuration is Tet sensitive
- Flipping of pBADrev pancake results in Tet resistance

A Two Pancake Construct

- Hin provided by separate plasmid
- Starting configuration is Tet sensitive
- Flipping results in 8 different configurations,
 - 1 is Tet resistant
 - at least 4 have RFP expression

Proteins Interacting With 2-Pancake Construct

Four Pancake Constructs

• Starting configuration is Tet, Chl, Kan sensitive

 Flipping results in various configurations of Tet^R, Chl^R, Kan^R.

Methods – Building New Parts

- Synthetic DNA
 - Determine sequence
 - Order DNA to be made
 - Anneal oligos
 - Ligate into pSB1A2
 - Verify with sequencing
- Method used to make:
 - hixC
 - Recombination Enhancer (RE)
 - Reverse RBS

Methods – PCR of Natural Genes

Amplification

- Locate gene and design primers
- Isolate genomic DNA
- Optimize PCR reaction
- Purify band
- Clone into pSB1A2
- Method used to make:
 - Hin recombinase from Salmonella
 - Hin recombinase with LVA tag
 - 3 antibiotic resistance genes from E. coli

Methods – Reversal of Parts

- PCR Switcharoo
 - Primers with BB prefix and suffix switched but also complementary to part
 - Purify Xbal/Spel fragment and clone into pSB1A2

Methods – Reversal of Parts

- Method used to make
 - Reversed pBAD
 - 3 Reversed antibiotic resistance genes

pBADrev

Parts Contributed to the Registry

Basic Parts

- 14 basics parts (11 + 3)
 - Recombination parts
 - New cloning vector
 - New Ab resistance genes forward and reverse
 - New control elements
- Construction Intermediates
 - -25 contributed (18 + 7)
- Devices
 - 23 contributed (12 + 11)

Color Key: Red=Davidson Blue=Missouri Western

Basic Pancake Parts Contributed

Name	lcon	Description	
J31009	Ģ	pSB1A7 (insulated plasmid)	
J31000		Hin Recombinase	Davidson
J31001		Hin Recombinase-LVA	Missouri Western
J3101		Recombination Enhancer	
J44000		HixC	
J44001	RBS	RBS reverse	
J31003	Kap>	Kan ^R forward	
J31002	Kan	Kan ^R reverse	
J31005		Chl ^R forward	
J31004		Chl ^R reverse	
J31007		Tet ^R forward	
J31006		Tet ^R reverse	
J44002	Ø	pBAD reverse	
J31011		RFP and RBS reverse	

Solving the Pancake Problem with a Bacterial Computer

Thanks to the Missouri Western Summer Research Institute and Student Excellence Fund, to the iGEM Founders, Organizers, and Community, to *His Ambassadorship,* Andrew Hessel, and to our collaborators at Davidson College

