Edinburgh iGEM 2006

Jamboree presentation 11 - 4 - 2006

Intro to our team

ANDON ANDON ANDON ANDON ANDON ANDON

- <u>Team members</u>
- Engineering:
 - Kim de Mora
 - Bryony Davidson
 - Jen Wilson
- Biology:
 - Judith Nicholson
 - Farid Bizzari
 - Jelena Aleksic
- Informatics:
 - Sreemati Lalgudi Seshasayee
 - Patrick Cai
 - Sergii Ivakhno
- Faculty:
 - Dr Chris French
 - Dr Alistair Elfick
 - Dr Hongwu Ma
 - Laszlo Kozma-Bognar

ANNAN ANNAN ANNAN ANNAN ANNAN ANNAN

Why detect arsenic?

Bangladesh

ANNAN ANNAN ANNAN ANNAN ANNAN ANNAN

Another cruel twist of fate...

WOORD WOORD WOORD WOORD

ANDON ANDON ANDON ANDON ANDON ANDON

33-75 million people affected

ANNAN ANNAN ANNAN ANNAN ANNAN ANNAN

100 million people worldwide

And not just in the developing world either...

ANDON ANDON ANDON ANDON ANDON ADDIN

Arsenic detection method

ANDRA ANDRA ANDRA ANDRA ANDRA ANDRA

- Current field technology: the Gutzeit Method
- Expensive and unreliable (max sensitivity of 50 ppb & 33% false negatives)

Our device

Arsenic-sensing bacteria with a pH output

- Very sensitive
- pH requires an indicator, litmus paper or a simple electrode
- It is possible to engineer a quantitative response:

ArsR mechanism in E. coli

ANNON ANNON ANNON ANNON ANNON ANNON

System gene circuit diagram

λ cl / Lacl hybrid promoter detail

The model explained: Urease operon

No.	Name	Equation
1	LacI production	promoter3->promoter3+LacI
2	LacI binding to allolactose	LacI+allolactose=LacI-allolactose
3	LacI binding to promoter4	LacI+promoter4 = LacI-promoter4
4	Urease production	promoter4->promoter4+Urease
5	LacI degradation	LacI->null
6	Urease degradation	Urease->null

The model explained: λCI operon

ANDON'S ANDON'S ANDON'S ANDON'S 1 Equation No Name 2 ArsR 7 promoter2-Arsenite ArsR:As(III) Complex >promoter2+ArsR production 8 ArsR ArsR+2As(III)=ArsR-2As(III) repression ArsR binding to Arsenic expression 2ArsR+promoter2=2ArsR-9 ArsR binding to promoter2 promoter2 arsR lambdaCl promoter2 LCI 10 promoter2->promoter2+LCI expression production $\bigcirc \bigcirc$ 11 LCI binding LCI+promoter4=LCI-LCI promoter4 degradation amino acids to promoter 4 repression 12 ArsR ArsR->null degradation LCI->null 13 LCI degradation

The model explained: *lacZ'* operon

No.	Name	Equation	
14	ArsD production	promoter1->promoter1+ArsD	
15	ArsD binding to Arsenic	ArsD+2As(III)=ArsD-2As(III)	
16	lacZ production	promoter1->promoter1+lacZ	
17	ArsD binding to promoter1	2 ArsD+promoter1=2ArsD-promoter1	
18	ArsD degradation	ArsD->null	
19	lacZ degradation	lacZ->null	

The model explained: the whole system

NOON NOON NOON NOON	ANDON ANDON ANDON
Arsb.As(III) Complex Arsenite. Arsb. frepression expression arrino acids expression b-Galactosidase	 Operon 1 6 Reactions 10 Parameters
Arsenite repression promoter2 ars R lambdaCl LCI degradation amino acids	 Operon 2 6 Reactions 10 Parameters
repression promoter3 lacl promoter4 urease expression Lacl repression allolactose Lacl:Allolactose Complex	 Operon 3 7 Reactions 12 Parameters

Modelling result: low arsenic

Modelling result: high arsenic

Parameters sensitivity analysis

The most sensitive parameters affecting lacZ						
Nanme	Description	Peak value of sensitivity	Normal value			
K-1	ArsD-2AS(III) dissociate rate	-2	0.65/s			
K-2	2ArsD-promoter1 dissociate rate	4	0.65/s			
K3	ArsD degradation rate	90	0.05/s			
K7	ArsR degradation rate	12	0.05/s			
K13	LacZ degradation rate	-35	0.1/s			

Parameter scanning

Building the biosensor

- To prove our concept and provide a starting point for the larger device, we built a simple construct
- To test arsenic sensitivity and magnitude of pH change (if any!)

Biobricks

- Putting new parts in the registry one of our project aims
- Created ArsR and Ars promoter parts from *E. coli*, with *B. subtilis* for comparison
- Also built new *lacZ'*
- Hybrid promoter built and urease planned (sitespecific mutagenesis on urease)

Urease part ideas

W

- Secondary idea 3D Structure Builder
- Links to biosensor model by using the urease part
- Tissue engineering, bioremediation, etc.

$$Urea + H_2O \rightarrow CO_2 + NH_3 = \begin{pmatrix} pH \\ rho = 0 \end{pmatrix} = \begin{pmatrix} pH \\ rho = 0 \end{pmatrix}$$
Calcium carbonate

Outcomes

- Result: Simple construct built and ready to be characterised with pH experiments
- Several parts sequenced for registry
- Future: Test hybrid promoter and urease device, work towards full device

Characterization procedure

- Now we have the engineered constructs, we need to test them
- Aims:
 - to measure the scale of the pH response
 - To test the sensitivity of the *B. subtilis* and *E. coli* Arsenic promoters

Urease characterization

ANDON ANDON ANDON ANDON ANDON ANDON

Urea experiments: Time against pH

Note: only 1 response from wildtype urease

www.Macteria.co.uk

•The Wildtype urease contains 2 forbidden restriction sites

•The strain with the restriction sites removed failed to change the pH (i.e. the mutagenesis failed)

•Only the wild type Urease operon produced a change in pH

E. coli biosensor characterization

Standard sensitivity range: Time against pH

•Only testing a yes/no response here

•arsR promoter begins to function after about 300 min

•Difference of 0.6 pH units between control and average readings

Note: successful response at all concentrations of arsenic

E. coli biosensor characterization

ANDON ADDON ADDON ADDON ADDON ADDON

Increased As sensitivity range: time against pH

•Non-optimised growth medium conditions (response could be faster)

•Average overnight difference of 0.81 pH units

Despite slower response,
5 ppb within sensitivity of promoter

•Can detect WHO guideline levels of Arsenic (arsenate)

Note: successful response at all concentrations of arsenic

The desired end result

ANDON ANDON ANDON ANDON ANDON ANDON

- Cheap, reliable, robust field test device
- Foolproof to operate and get accurate results
- Can be produced for less than 1\$ in mass volumes

The field test device

ANDON ANDON ANDON ANDON ANDON ANDON

 A test tube could contain all the necessary components: Freeze dried bacteria, growth medium, indicator powder, Ampicillin salt, etc...

•These tubes could then be given to local villagers to monitor their own water quality themselves

•A good alternative to the widely used Gutzeit method

Conclusions

ANDRA WIDON ANDRA WIDON ANDRA WIDON

- Successfully designed and modelled complex device
- Proved a measurable pH response could be obtained with As concentration to WHO standards
- Successfully biobricked a variety of parts to deposit in the registry
- With further work, our device could potentially help millions worldwide

We would like to thank our sponsors

ANNAN ANNAN ANNAN ANNAN ANNAN ANNAN

• Funding assistance:

The Gatsby Charitable Foundation

research council

Engineering and Physical Sciences Research Council

• Sysbio 2.0 toolbox licenses:

A The MathWorks

biotechnology and biological science

Questions?

ANDON ANDON ANDON ANDON ANDON ANDON

Edinburgh Castle (on the only day this year it wasn't raining)