

Teaching cells how to add numbers

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

ETH Zurich and its iGEM Team 2006 Content Overview

Who are we and where are we from?

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

ETH Zurich and its iGEM Team 2006 Content Overview

Who are we and where are we from?

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

ETH Zurich and its iGEM Team 2006 Content Overview

Who are we and where are we from?

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

ETH Zurich and its iGEM Team 2006 Content Overview

Who are we and where are we from?

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

ETH Zurich and its iGEM Team 2006 Content Overview

The ETH Zurich iGEM team 2006

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

- Model based design the XOR gate
- Biological Implementation of the gates
- 4 Experiments and Results

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

- 2 Model based design the XOR gate
- Biological Implementation of the gates
- 4 Experiments and Results

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

- 2 Model based design the XOR gate
- Biological Implementation of the gates
- Experiments and Results

Applications of our System Model based design – the XOR gate Biological Implementation of the gates Experiments and Results

- 2 Model based design the XOR gate
- Biological Implementation of the gates
- 4 Experiments and Results

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Applications of our System

- Addition for cells (biologist's desk calculator)
- Shading effects that the world waited for
- 2 Model based design the XOR gate
 - System modeling
 - Steady-state behavior simulation
 - Steady-state sensitivity analysis
- 3 Biological Implementation of the gates
 - The XOR-gate
 - The AND-gate
- 4 Experiments and Results
 - Experiments
 - Summary

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Direct application of our system

perfect match

less congruent

artistic

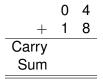
Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Adding numbers

4 + 18 = ?

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Adding numbers


4 + 18 = ?

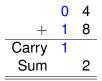
Addition for cells (biologist's desk calculator) Shading effects that the world waited for

One decimal position after the other

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

One decimal position after the other

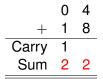
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


One decimal position after the other

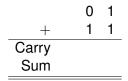
Addition for cells (biologist's desk calculator) Shading effects that the world waited for

One decimal position after the other

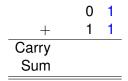
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


One decimal position after the other

Addition for cells (biologist's desk calculator) Shading effects that the world waited for


One decimal position after the other

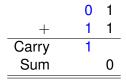
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

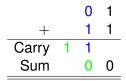
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

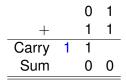
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

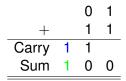
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

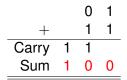
Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Same principle for binary addition

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Same principle for binary addition

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

ABCarrySum0000

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

А	В	Carry	Sum	
0	0	0	0	
0	1	0	1	

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

А	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

А	В	Carry	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

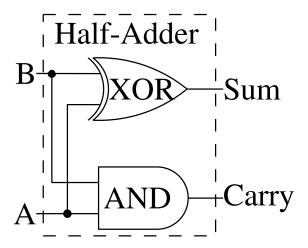
Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

А	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

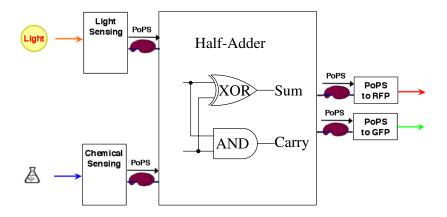
Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Addition for cells (biologist's desk calculator) Shading effects that the world waited for


Logic used for calculations in binary

А	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

А	В	AND	А	В	XOR
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0


Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Logic used for calculations in binary

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

Building a system around the half-adder

Addition for cells (biologist's desk calculator) Shading effects that the world waited for

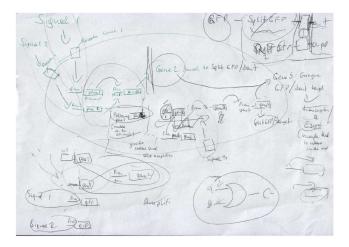
Building a system around the half-adder

I. put chemical to plate

2. let bacteria grow uniformly

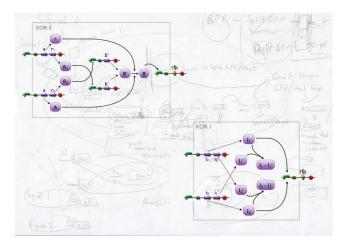
4. expected result

cardboard with slits

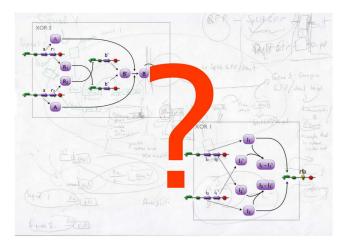

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

1 Applications of our System

- Addition for cells (biologist's desk calculator)
- Shading effects that the world waited for
- 2 Model based design the XOR gate
 - System modeling
 - Steady-state behavior simulation
 - Steady-state sensitivity analysis
- Biological Implementation of the gates
 - The XOR-gate
 - The AND-gate
- 4 Experiments and Results
 - Experiments
 - Summary


System modeling Steady-state behavior simulation Steady-state sensitivity analysis

XOR concepts


System modeling Steady-state behavior simulation Steady-state sensitivity analysis

XOR concepts

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

XOR concepts

Requirements

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Biologically feasible

- 2 Appropriate steady-state behavior
- 8 Robust to uncertainty
- Appealing

Requirements

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

- Biologically feasible
- Appropriate steady-state behavior
- 8 Robust to uncertainty
- Appealing

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Requirements

- Biologically feasible
- Appropriate steady-state behavior
- Robust to uncertainty
- Appealing

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Requirements

- Biologically feasible
- Appropriate steady-state behavior
- Robust to uncertainty
- Appealing

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Requirements

- Biologically feasible
- Appropriate steady-state behavior
- Robust to uncertainty
- Appealing
- \rightarrow estimated using a model

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Dynamic system model

$$\frac{\partial \vec{c}(t)}{\partial t} = \vec{f}(\cdot)$$

 $\vec{c}(t)$: Concentrations

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Dynamic system model

$$\frac{\partial \vec{\boldsymbol{c}}(t)}{\partial t} = \boldsymbol{N} \cdot \vec{\boldsymbol{r}}(\vec{\boldsymbol{c}}(t), \vec{\boldsymbol{u}}(t), \vec{\boldsymbol{p}}, t)$$

- $\vec{c}(t)$: Concentrations
 - N: Stoichiometric matrix
- $\vec{r}(\cdot)$: Reaction rates (kinetic rate law)
- $\vec{u}(t)$: Inputs / external influences
 - \vec{p} : Parameters (kinetic constants, ...)

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

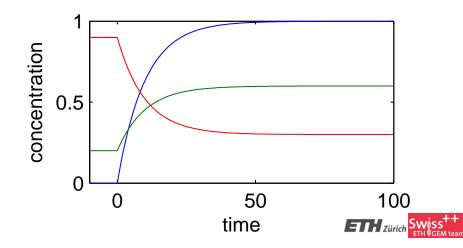
Dynamic system simulation

No closed-form solutions

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Dynamic system simulation

No closed-form solutions \rightarrow numeric integration


Steady-state

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

concentration 0.5 0 50 100 n time Zürich

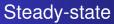
System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state

Steady-state

Using steady-state as output because:

- convenient to measure: system remains there
- robust to disturbances
- exists in most practical systems

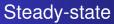

ETH iGEM Team 2006 Teaching cells how to add numbers

System modeling

Steady-state behavior simulation

Steady-state sensitivity analysis

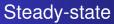
System modeling Steady-state behavior simulation Steady-state sensitivity analysis



Using steady-state as output because:

- convenient to measure: system remains there
- robust to disturbances
- exists in most practical systems

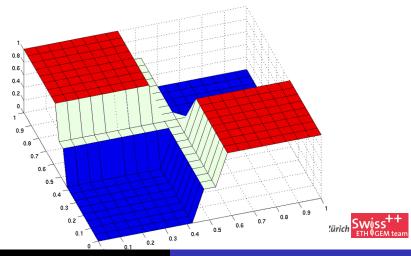
System modeling Steady-state behavior simulation Steady-state sensitivity analysis



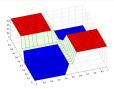
Using steady-state as output because:

- convenient to measure: system remains there
- robust to disturbances
- exists in most practical systems

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

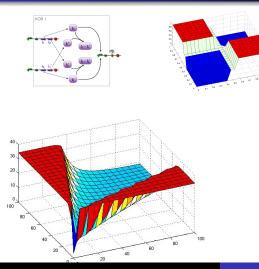

Using steady-state as output because:

- convenient to measure: system remains there
- robust to disturbances
- exists in most practical systems

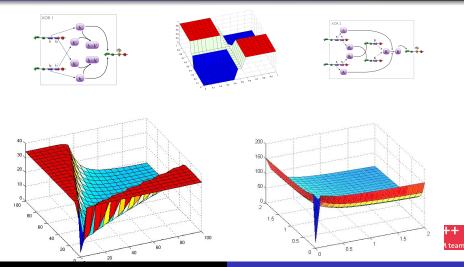

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state behavior of a good XOR

System modeling Steady-state behavior simulation Steady-state sensitivity analysis


Simulated steady-state behavior of the concepts

System modeling Steady-state behavior simulation Steady-state sensitivity analysis


Simulated steady-state behavior of the concepts

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Simulated steady-state behavior of the concepts

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Steady-state sensitivity

- measures influence of parameter on steady-state → robustness
- algebraically derivable from model

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Steady-state sensitivity

- $\bullet\,$ measures influence of parameter on steady-state $\rightarrow\,$ robustness
- algebraically derivable from model

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Steady-state sensitivity

- measures influence of parameter on steady-state \rightarrow robustness
- algebraically derivable from model

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Sensitivity = 2

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Sensitivity = 2

Parameter change by 1%

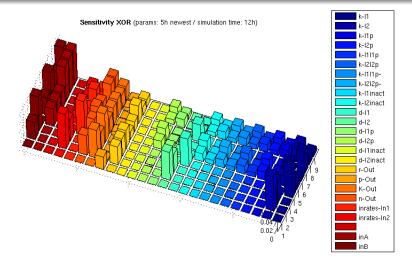
System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity

Sensitivity = 2

Parameter change by 1% \downarrow steady-state changes by 2%

System modeling Steady-state behavior simulation Steady-state sensitivity analysis

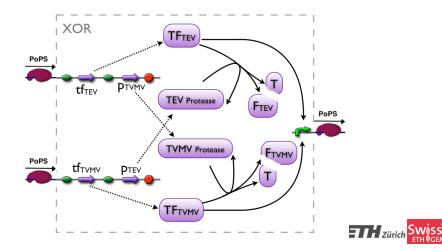

Steady-state sensitivity

relative parameter change × sensitivity = steady-state change

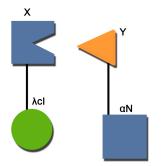
System modeling Steady-state behavior simulation Steady-state sensitivity analysis

Steady-state sensitivity: XOR output

The XOR-gate The AND-gate


Applications of our System

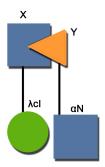
- Addition for cells (biologist's desk calculator)
- Shading effects that the world waited for
- 2 Model based design the XOR gate
 - System modeling
 - Steady-state behavior simulation
 - Steady-state sensitivity analysis
- Biological Implementation of the gates
 - The XOR-gate
 - The AND-gate
- 4 Experiments and Results
 - Experiments
 - Summary


The XOR-gate The AND-gate

XOR overall system

The XOR-gate The AND-gate

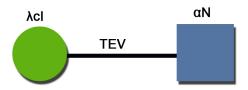
XOR inspiration



Reference: Dove and Hochschild, 1998

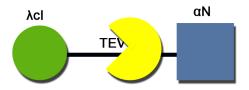
The XOR-gate The AND-gate

XOR inspiration



Reference: Dove and Hochschild, 1998

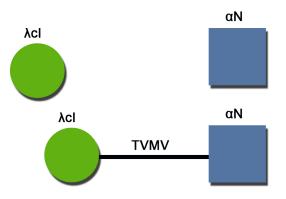
The XOR-gate The AND-gate


XOR main elements

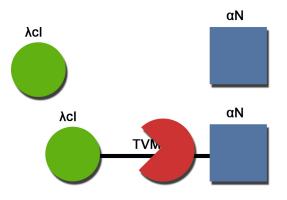
The XOR-gate The AND-gate

XOR main elements

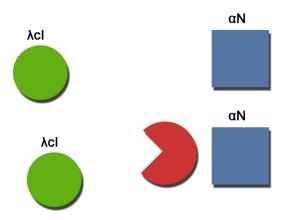
The XOR-gate The AND-gate

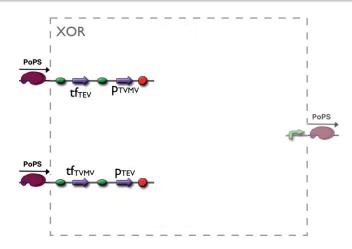

XOR main elements

The XOR-gate The AND-gate

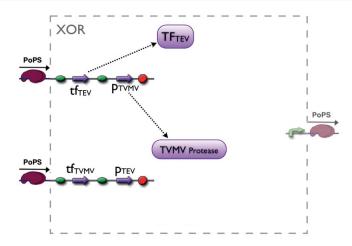

XOR main elements

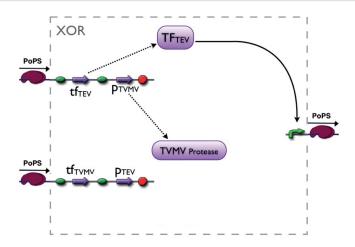
The XOR-gate The AND-gate

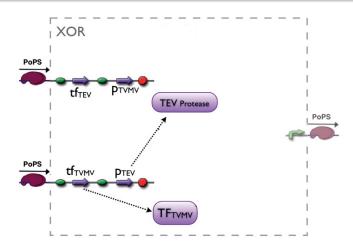

XOR main elements

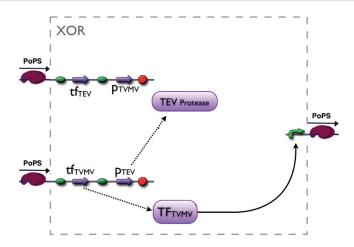


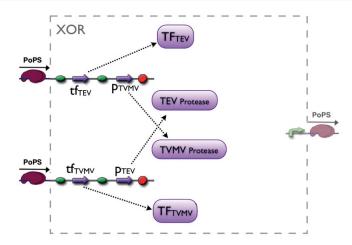
The XOR-gate The AND-gate

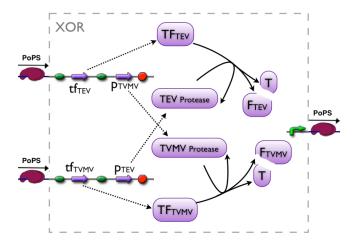

XOR main elements


The XOR-gate The AND-gate


The XOR-gate The AND-gate


The XOR-gate The AND-gate


The XOR-gate The AND-gate


The XOR-gate The AND-gate

The XOR-gate The AND-gate

The XOR-gate The AND-gate

The XOR-gate The AND-gate

Design Advantages of the XOR

The XOR gate

- Very specific proteases, almost no off-target effects
- Active Proteases can be expressed in vivo
- In a functional TF, AD and DBD can be separated by various linkers

The XOR-gate The AND-gate

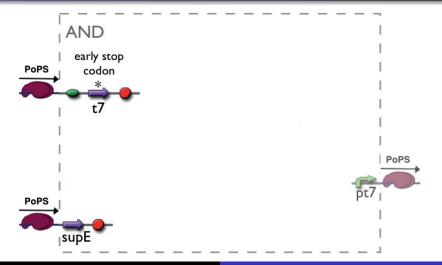
Design Advantages of the XOR

The XOR gate

- Very specific proteases, almost no off-target effects
- Active Proteases can be expressed in vivo

• In a functional *TF*, *AD* and *DBD* can be separated by various linkers

The XOR-gate The AND-gate

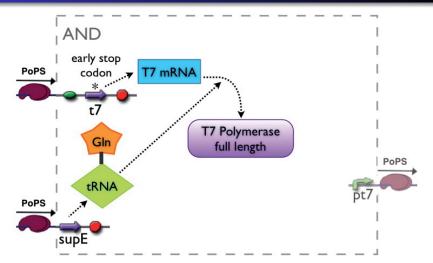

Design Advantages of the XOR

The XOR gate

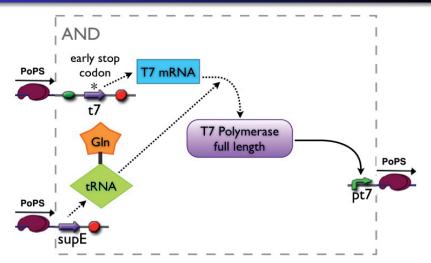

- Very specific proteases, almost no off-target effects
- Active Proteases can be expressed in vivo
- In a functional TF, AD and DBD can be separated by various linkers


The XOR-gate The AND-gate

The XOR-gate The AND-gate



The XOR-gate The AND-gate



The XOR-gate The AND-gate

Functionality Overview

The XOR-gate The AND-gate

Experiments Summary Acknowledgments

Applications of our System

- Addition for cells (biologist's desk calculator)
- Shading effects that the world waited for
- 2 Model based design the XOR gate
 - System modeling
 - Steady-state behavior simulation
 - Steady-state sensitivity analysis
- Biological Implementation of the gates
 - The XOR-gate
 - The AND-gate
- Experiments and Results
 - Experiments
 - Summary

Experiments Summary Acknowledgments

Input testing: chemical and light sensing

- Chemical sensing
- Light Sensing from UCSF group

Light

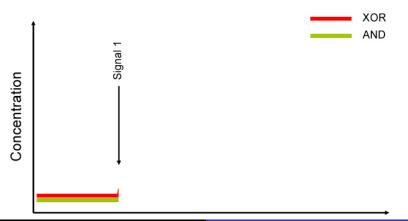
No light

Experiments Summary Acknowledgments

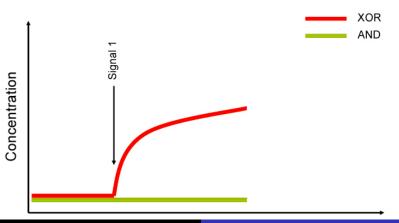
- Test the gates operation via 2 inducible promoters
- Characterize behavior by varying strength and duration of inputs

Experiments Summary Acknowledgments

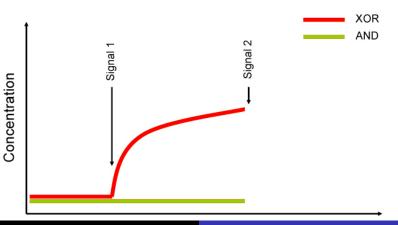
Expected results


Experiments Summary Acknowledgments

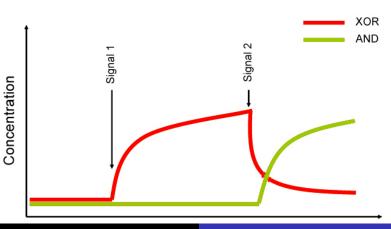
Expected results


Experiments Summary Acknowledgments

Expected results


Experiments Summary Acknowledgments

Expected results


Experiments Summary Acknowledgments

Expected results

Experiments Summary Acknowledgments

Expected results

Experiments Summary Acknowledgments

System status

• Design and order DNA for XOR, AND gates

- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design and order DNA for XOR, AND gates
- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design and order DNA for XOR, AND gates
- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design and order DNA for XOR, AND gates
- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design and order DNA for XOR, AND gates
- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design and order DNA for XOR, AND gates
- Test chemical and light sensing systems
- Clone reporter genes into XOR, AND plasmids
- Combine gate segments: XOR (3), AND (2)
- Clone gates into plasmids and test separately
- Combine sensing and gate parts and test entire system

Experiments Summary Acknowledgments

- Design Half Adder
 - Perform addition in bacteria
 - Pattern recognition
- Logic gates
 - XOR two similar transcription factors with specific proteases
 - AND suppressor tRNA
- Learned a lot and enjoyed the process

Experiments Summary Acknowledgments

Acknowledgments

Many thanks to the iGEM organisation team

And also thanks to the following people and institutions which supported us:

- Advisers: Sven, Jörg and Eckart
- ETH for infrastructure and financial support
- European Union for financial support
- Lab-people: Giorgia, Alex and Eric
- Ambassadors: Jonas, Tamara and Robin
- Anselm Levskaya and UCSF team

Experiments Summary Acknowledgments

... and of course thank YOU for your attention. Are there any questions?

