ready, set, swarm! designing a bacterial relay race

penn state iGEM 2006

undergraduates

B.Anderson, <u>J.Badalamenti</u>, J.Bigus, C.Buckno, J.Dunning, J.Grim, A.Lewicki E.Morin, N.Shewski, <u>L.Weiss</u>

graduated members

N.Linn, S.Neuman, A.Tascone, L.Weaver

graduate students D.Tanjore, S.Walker

faculty advisors

Drs. R.Balasubramanian, P.Cirino, D.Farber, W.Hancock, V.Narayanan, B.Nixon, J.Regan, T.Richard, M.Tien, P.Weiss

outline

- penn state team project idea
- system requirements/ approach to problem
- strategy
- subtasks
 - circuit design
 - micofabrication
- progress since iGEM '05
 future goals and challenges

concept

Idea: build a bacterial relay race

- motile bacteria move along a channel carrying a signal
- encounter a second immotile strain
- turn on a switch controlling the latter's motility

Why?

- Fun to bet on
- Great for lab downtime
- Novel signal carrier

system requirements

How to accomplish?

needs

method to control movement

way to direct movement

solution: control MotB flagellar protein

- Blair and Berg¹ showed that flagellar rotation could be restored in MotB K/O cells by complementing with a functional copy on a plasmid
- rotation restored on average in 10 min

¹Blair, D., Berg, H.G. Restoration of Torque in Defective Flagellar Motors. *Science* 242, 1678-1681 (1988).

system requirements

How to accomplish?

- needs
 - method to control movement
 - way to direct movement

solution: microchannels

- offer facile method for guiding bacteria
- no gradient necessary -Whitesides & Berg²
- optimal environment to constrain and direct quorum signal

²Berg, Whitesides, et al. E. Coli swim on the right. *Nature*, 435, June 30, 2005.

advantages

diffusible quorum signals have been functional activators in previous synthetic networks with luxR/AHL-controlled promoter

potential drawbacks

inadequate production of AHL for activation?; leaky expression from $\ensuremath{p_{\text{luxR}}}$

genetic control mechanism

microchannel fabrication

microchannel pictures

microchannel pictures

cells swarming through our microchannels velocity of swarming: ~10 µm s⁻¹

progress since iGEM 2005

Demonstrate motB repression – how?

first attempt: repress with lacl

repression with lacl

crucial element of the project:

- show repression of motB and induction upon desired input
- simplest construct to test repression and induction
 - place motB under control of lacl promoter

lacl repression results

designations:

- 1 +control, strain RP437³ (wild-type for motility)
- 2 -control, strain RP3087³ (motB⁻)
- 3 RP3087 with above construct at low copy (pSB4A3)

³ Block, S. M. & Berg, H. C. Successive incorporation of force-generating units in the bacterial rotary motor. (1984) *Nature* 309, 470–472.

pLacl

R0010

motB

S03271

demonstrate motB repression - how?

induction with HSL

test induction of motB with HSL

- use endogenous RBS of motB (BBa_S03271)
 - thought to be strong
- goal: examine leaky expression from pLuxR

induction with HSL

designations:

- 1 +control, strain RP437 (wild-type for motility)
- **2** -control, strain RP3087 (motB⁻)
- **3** RP3087 with motB under control of pLuxR at low copy

repression with additional lacl

design another system to repress motB

- necessary to show repression for project to work
- solution: place motB under control of pLacl
 - couple with additional expression of lacl
 - combinatorial approach
 - test library of promoter and RBS strengths

lacl repression, version 2.0

success!

additional high consitutive expression of lacl shown to fully repress motB expression

designations:

1 +control, strain RP437 (wild-type for motility)

2 -control, strain RP3087 (motB⁻)

3-6 contain construct above at low copy (pSB4A3)

3 RP3087; I14032+B0034 (highest lacl output)

4 RP3087; I14032+B0030 (high lacl output)

5 RP3087; I14032+B0031 (medium lacl output)

6 RP3087; I14033+B0034 (medium lacl output)

next steps

- results show repression of motB must be tight
- how to incorporate tighter repression with failed luxR input device?
 - remove endogenous RBS by PCR, add biobrick ends
 - make constructs with range of RBS strengths
 in progress
- new part: BBa_J09271, motB without RBS

sender devices

- construction of sender cell output devices
- combinatorial approach
 - allows for selection of best HSL producer to induce motility in the recipient

challenges

combinatorial approach to cloning

- inability to "forward engineer" due to lack of characterization of part interactions
- demonstrate repression of motB under control of pLuxR
 - unknown to what degree RBS strength must be reduced
- determine level of HSL output necessary to induce motility in recipient
- visualization of quorum sensing events in microchannels

future work

- clone library of motB with varying RBS strengths
- test for repression, induction with HSL
- examine possiblity of antisense RNA to tighten pLuxR leakiness
- induce recipient cels with HSL produced from sender cells
- visualize induction in microchannel via fluorescent reporters
- construct strains knockout lacl in RP3087 (motB⁻)
- test receiver cell with switch
- implement stopping mechanism in sender?

acknowledgments

The Dorothy Foehr Huck and J. Lloyd Huck Institutes of the Life Sciences The Huck Institutes of the Life Sciences

- Penn State's iGEM project has been supported by:
 - Office of the Dean of Undergraduate Research
 - Huck Institute for the Life Sciences
 - Eberly College of Science
 - The Agricultural and Biological, Chemical, and Bioengineering Departments
 - Materials Research Institute
 - Center for Nanoscale Science NSF MRSEC
 - Penn State Nucleic Acid Facility for supplying PCR and sequencing primers
- The iGEM Team would like to thank the following faculty mentors:
 - S.P. Walker, Drs. R. Balasubramanian, W. Hancock, P. Cirino, M. Tien, D. Farber, P. Weiss, B. Nixon, J. Regan, V.Narayanan, and T. Richard

questions? answers?

Thank you!

