

The Half-Adder: A biological computaion unit

- 1 ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

- 1 ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- 3 Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

- ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- 3 Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

- ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- 3 Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

- ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- 3 Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

- ETH Zurich iGEM Team
- 2 Introduction
 - What is a half adder?
 - Pattern Recognition with a half adder
- 3 Implementation of a half adder
- 4 Biological Implementation
 - The XOR-gate
 - The AND-gate
 - Chemical Sensing
 - Light Sensing
- Modeling and Simulation
- 6 The Experiments

Who are we and where are we from?

Who are we and where are we from?

Who are we and where are we from?

Who are we and where are we from?

Who are we and where are we from?

Who are we and where are we from?

The Experiments

Who are we and where are we from?

Who are we and where are we from?

Switzerland ETH Zurich

ETH iGEM team 2006

5 undergraduates,4 graduatesand 3 advising profs

- Addition is the most important operation in digital calculations
- An adder is a device, which performs the addition of two numbers
- A one-bit-adder consists of two half-adders

- Addition is the most important operation in digital calculations
- An adder is a device, which performs the addition of two numbers
- A one-bit-adder consists of two half-adders

- Addition is the most important operation in digital calculations
- An adder is a device, which performs the addition of two numbers
- A one-bit-adder consists of two half-adders

- Addition is the most important operation in digital calculations
- An adder is a device, which performs the addition of two numbers
- A one-bit-adder consists of two half-adders

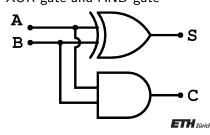
Half-adder

Inputs: 2 one-bit numbers A,B

Outputs: 1 two-bit number, arithmetic sum A+B

Pattern Recognition with a half adder

Implementation (Engineering point of view)

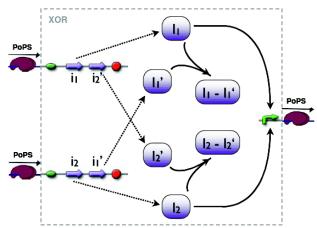

Half-adder

Inputs: 2 one-bit numbers A,B

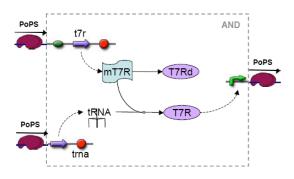
Outputs: 1 two-bit number, arithmetic sum A+B

	Inputs		Outputs	
	Α	В	С	S
	0	0	0	0
	0	1	0	1
	1	0	0	1
	1	1	1	0

A half-adder consists of two gates: XOR-gate and AND-gate

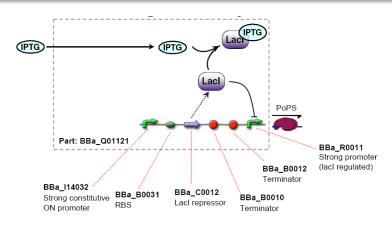

Total System Overview
The XOR-gate
The AND-gate
Chemical Sensing
Light Sensing

Biological Implementation: Overview


Total System Overvie The XOR-gate The AND-gate Chemical Sensing Light Sensing

he AND-gate

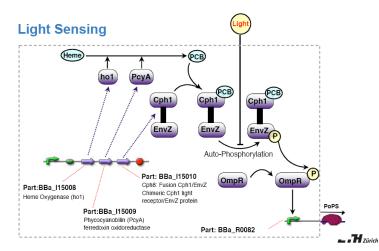
The AND-gate


T7R: T7 RNA Polymerase T7Rd: deficient (inactive) T7R

mT7R: mRNA for T7R

tRNA: tRNA to repress "early stop" translation

Chemical Sensing Part



IPTG binds to LacI and activates expression from BBa_R0011 = PoPS signal

Total System Overview
The XOR-gate
The AND-gate
Chemical Sensing
Light Sensing

Light Sensing Part

The model

Simulation Results

Sensitivity Analysis

??The Experiments??

??Plans?? Results

Experimental Results

