Plasmic (pUC57-Sulfur-3Metallic) Gene Probe to Identify Hydrocarbons

Prairie View A&M University IGEM Team 2006

Background

- Cation porphyrins, Zn, Cu, Fe enhance mRNA expression in fungi (Cuero et al 2003, Cuero and Ouellet, 2005)
- >Cation porphyrins are found in petroleum oil, so they can be used as a markers.
- Cation porphyrins mediate redox potential reactions, they produce reactive (radicals) hydroxides that oxidize DNA. (Byrnes, 1996)

 Iron-sulfur clusters [3Fe4S], in their oxidized form will induce repression of gene, while the reduced form for FdI; [4Fe4S] will derepress the gene expression (A.J Thomson)
Genes are made of hundreds of atoms......

Metals Bound to the Negative Charged Sugar-Phosphate of DNA

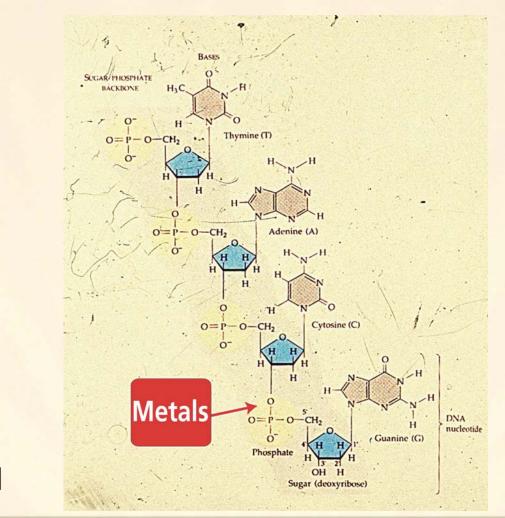


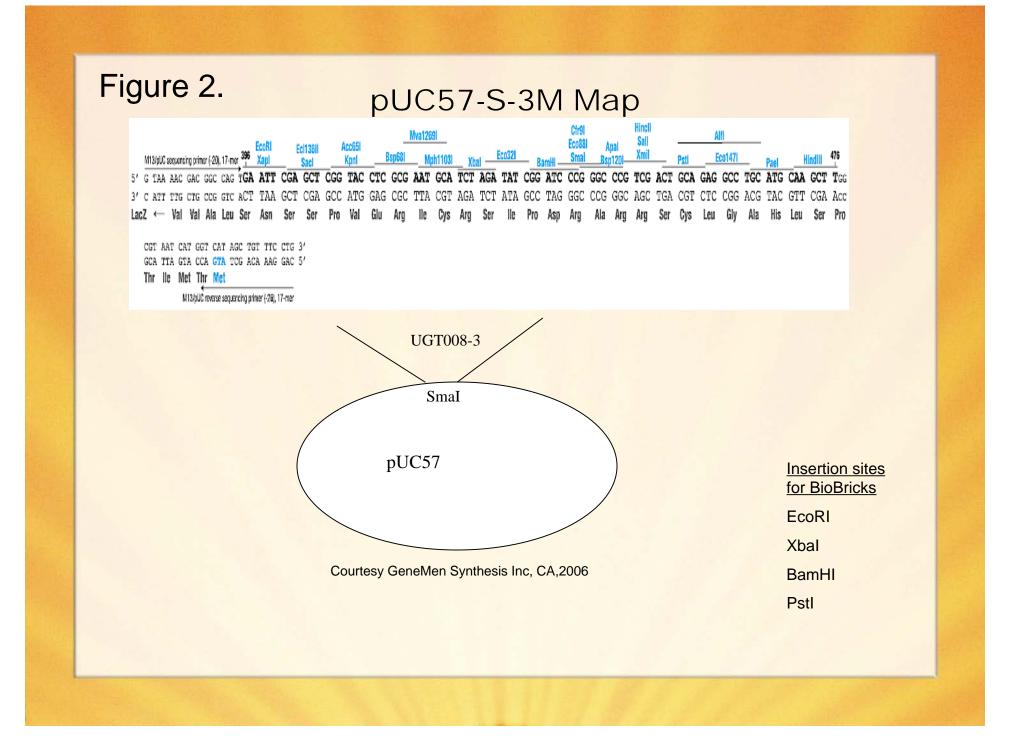
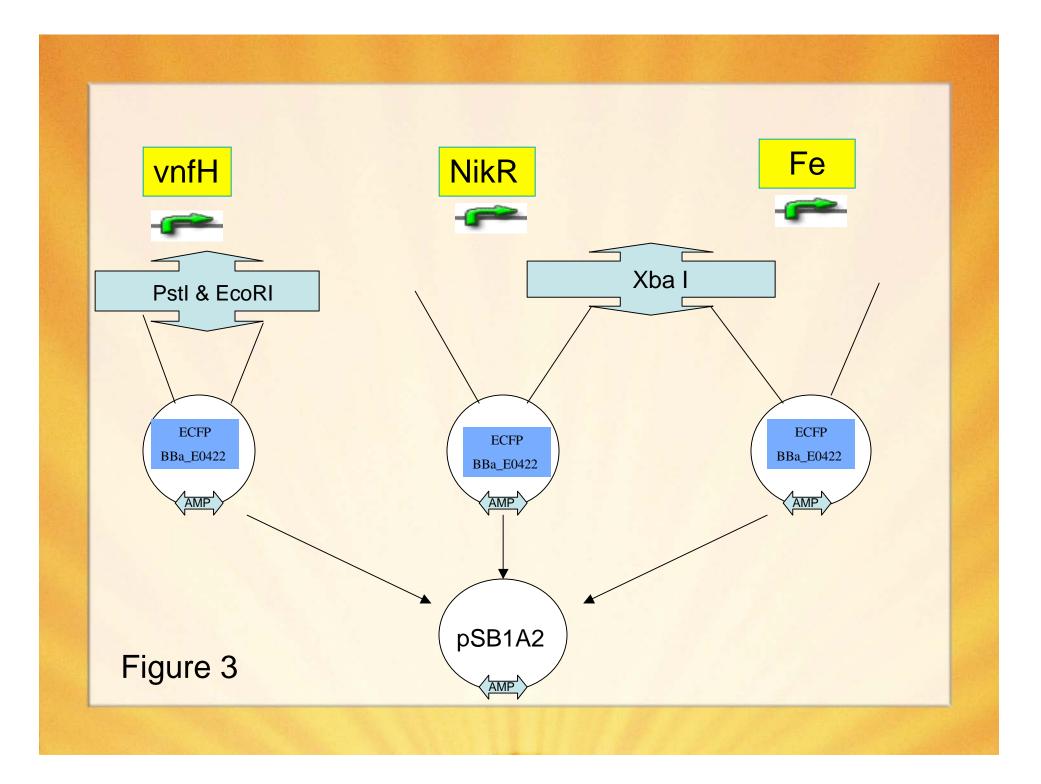
Figure 1

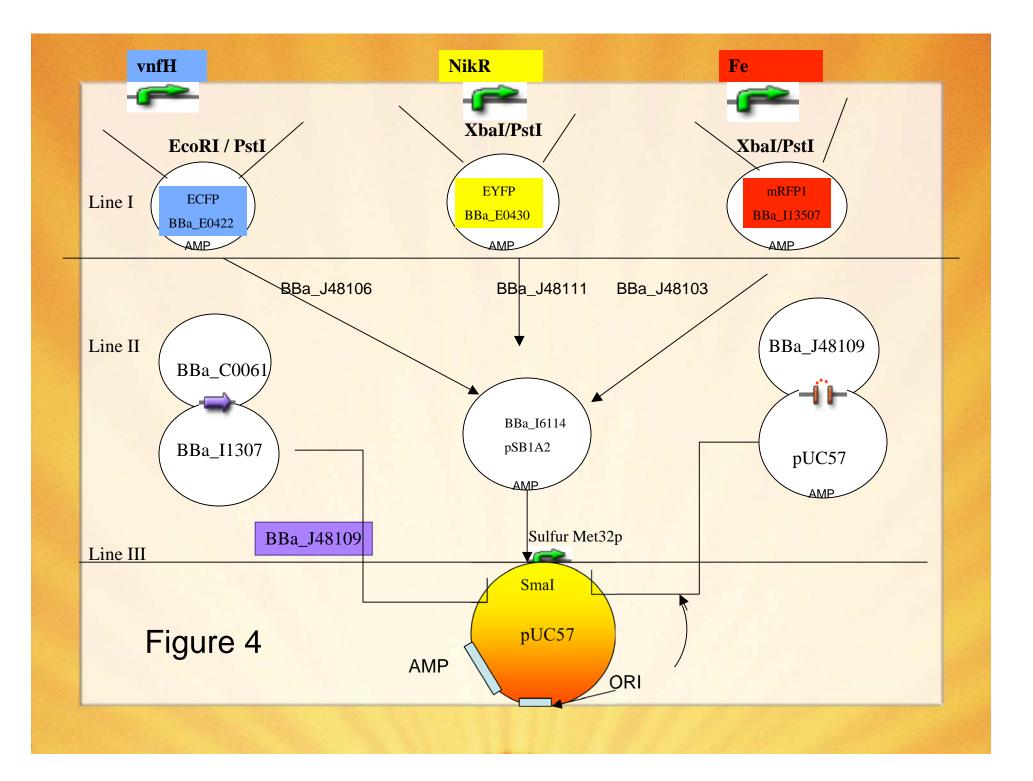
Objective

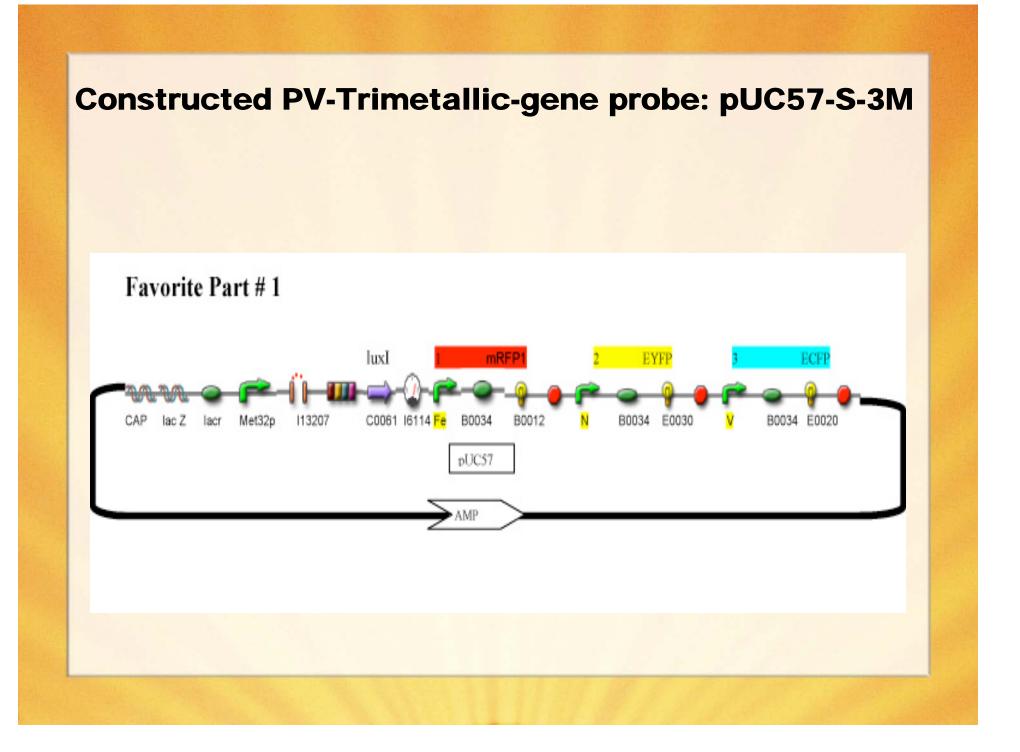
To develop standardized Metallo-genes for sensing Hydrocarbons by using metal ions [Fe (II), Ni(II), V(VI)] as a marker.

Hypothesis

Developing gene probe sensoribility of metal ions to detect hydrocarbons using standard DNA components (BioBricks).

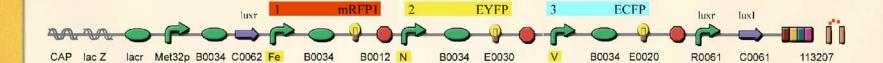




Table 1. Met32p Gene Information


Gene No.		Gene Name	Similar to Met32p
Length (bp)	588		
Vector	pUC57		
Plasmid No.	A63403-3		
Cloning site*	SmaI	Host	DH5a

A unique BamH1 and EcoRV sites at 5' and 3' end, respectively was added.

<u>?-</u>	Name		d Parts in Regist	Description	Length
	BBa J48	<u>108</u>	Measurement	pUC57-Sulfur-3M	10106
- ?-	Name	Туре	Description		Length
	<u>BBa_J48103</u>	Regulatory	Iron promoter		140
	<u>BBa_J48104</u>	Regulatory	NikR promoter, a prote factors that repress ex	ein of the ribbon helix-helix family pre	of trancription 40
	<u>BBa_J48106</u>	Regulatory	vnfH		891
	<u>BBa_J48107</u>	Regulatory	UGT008-3 Promoter/M	1et32p	588
	<u>BBa_J48109</u>	Signalling	lux l		4791
	<u>BBa_J48110</u>	Regulatory	Fe Promoter+ mRFP1		1009
	<u>BBa_J48111</u>	Regulatory	E. coli NikR		926
	<u>BBa_J48112</u>	Regulatory	vnfH: vanadium promo	ter	1816



Constructed PV-Trimetallic-gene probe: pUC57-S-3M Favorite Part 2

(Planning)

Growth of the pUC57-S-3M Transformed Micrococcus luteus Cells in Comparison with Non-transformed M. luteus (ATCC #4698)

Figure 5.

CFU of the Transformed Cells Showing the Expression of the Fluorescent Protein



Figure 6

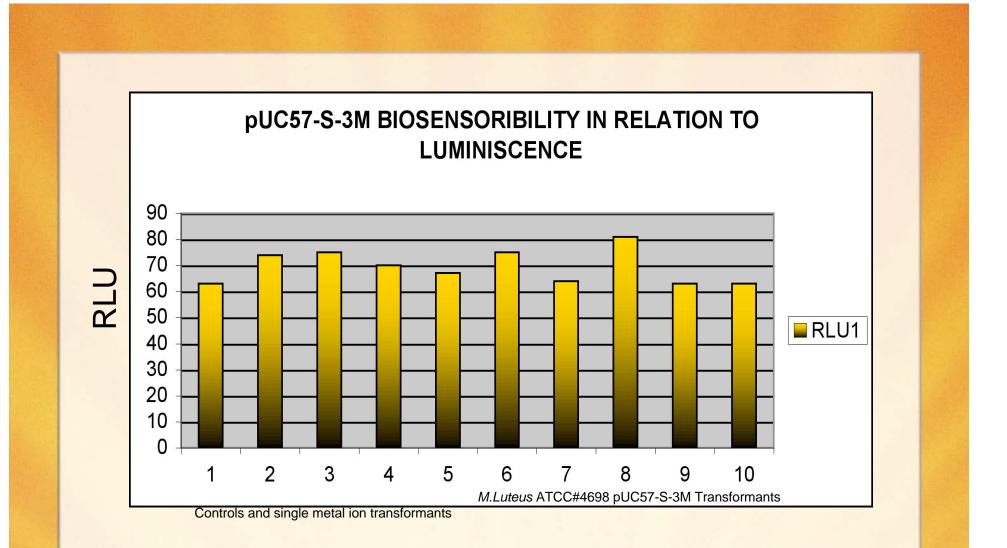


Figure 7

Table 2. Biosensoribility of the Trimetallic Gene Probe in Relation to DNA Expression under Different Metal Concentration, as Compared to Non-Transformed

Cell Treatment	DNA Concentration (ng/ml)
Transformed (Gene Probe)	(
CONTROL (Micrococcus luteus)	30.6
Tr ML-O ₂ , Fe+Ni+V+S(0.2ppm)	11.9
Tr MLO ₂ +C6H5SH, Fe+Ni+V+S (2ppm)	18.3
Tr MLCO ₂ + C6H5SH, Fe+Ni+V+S(0.2ppm)	12.2
Tr O ₂ +C6H5SH No Metals	5.15
Non Transformed	
M.L -O ₂ (2ppm)	3.95
M.L -O ₂ +C6H5SH(2ppm)	1.15
M.L -C02+C6H5SH(2ppm)	0.95
M.L-C0 ₂ (2ppm)	4.5

Tr- Transformed cells by pUC57S-m3

Figure 8

Table 3. Biosensoribility of trimetallic gene probe (pUC57 SM-3) in relation to cell growth (CFU) as Compared to Cells Transformed with Single Metal Genes (before subjection in metal ion media)

BACTERIAL STRAINS

Time	M.L. ATCC#4698	Fe +mRFP1	V+ECFP	N+ EYFP	pUC57-S-3m probe
Day1	2.56 x 10^5	1.5x10^4	1.2x10^4	2.1x10^4	9x10^3
Day2	1.79x10^5	1.50x10^5	3.00x10^5	1.55x10^5	2.50x10^5

CFU=Colony Forming Units

- Fe+mRFP1 Iron promoter + red flourescence protein
- V+ECFP Vanadium + Enhanced Cyan Fluoresence Protein
- N+ EYFP Nickel+ Enhanced Yellow Fluorescent Protein

Table 4. Sensorability of M. luteus Strain (ATCC4698) Using in Relation to Metal Ion Concentration, pH, O₂, and Redox Potential at Different Times

		M.Juteu	<u>'s</u>		M.luter	iș†meta	<u>.</u>			ability to grow in
Metal(ppm)		. 2	50		2		50			both CO_2 and O_2
Time (hr)		, I N		A L		I N	I T I	A L		atmosphere. However the
0										presence of
	0.0.	0.007	0.03		0.36	0.5	0.06	03	0.3	thiophenol
	pН	7.1	Z (6	6.3	6	7	7	enables the
	mΥ	20	27		60	94	8°	90	90	transfomed
		Ö 2	CO2		ġ2	<mark>¢02</mark>	Ċ2	CO2		micrococcal cells
18										to grow under
	0.0.	0.4	<u>a 2</u>		6.25	<u>a az</u>	3.12	<mark>8 21</mark>	C 21	CO ₂ .atmosphere.
	рH	7.7	75		Ę,6	6	2	1.4	1.4	
	ωV	-13	34		-50	94	309	335	338	-
		02	CO2		02	CO2	02	CO2		
40										
	O.D.	· •.1	16		0.2	0.33	0.4	0.1	U.1	
	pH	́ Xв.	1		5.4	6	1,≮	2	2	
	ωV	-18	<u>42</u>		103	<u>66</u>	332	305	305	

FOR CO2 INCUBATION; CULTURES WERE KEPT AT 20% CO2 ATMOSHPEHE METAL IONS WERE USED @ 0.2,2,50ppm

O.D.=OPTICAL DENSITY

Table 5. Sensorability of M.L. Strain (ATCC4698) Using in Relation to Metal Ion Concentration, pH, O₂, Redox Potential, and Hydrocarbon (Thiophenol)

1
i
2
4
,
2
į
77

I Law and the Olde

The hydrocarbon, thiophenol provides the substrate for catalase and oxidase which allows for better growth in low O₂ concentration.

CHO=HYDROCARBON=THEOPHENOL

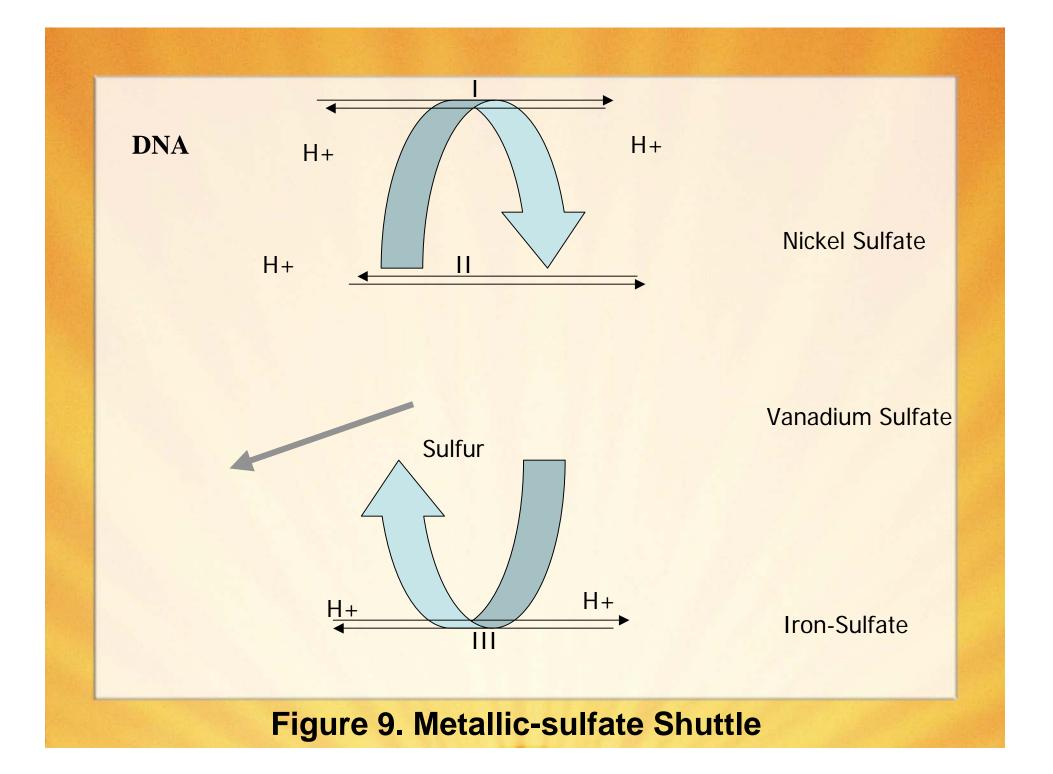
Table 6. Interactive Effect of pH, O₂, CO₂, and CHO on Transformed M. luteus pUC57-S-3M in Relation to Biosensoribility

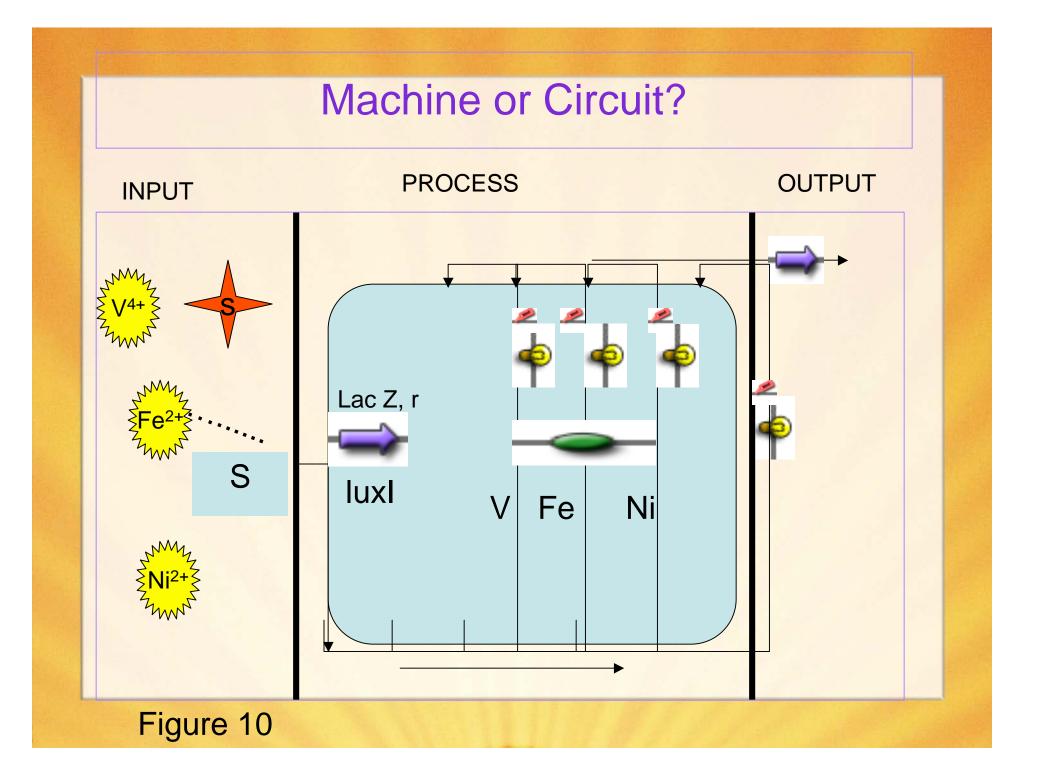
		pUC57-	-S-3M			
Metal(ppm)	0.2		2		no metals	
<u>Time (hr)</u>		IN	TI	AL	•	
0						
O .D.	0.021	0.038	0.03	0.023	0.006	0.011
pH	7.01	6.85	672	653	7.01	7
mV	28	36	54	53	28	26
	02	CO2	02	CO2	02	CO2
18						
0.D.	0.986	0.261	0.508	0.314	0.753	0.435
рH	5.18	5.06	4.96	4.85	5.82	5.14
mV	127	137	142	149	94	131
	02	CO2	02	CO2	02	CO2
40	0.00	0 171	0.514	0.000	0.000	0.51
0.D. pH	0.99 5.56	0.171	0.514	0.282	0.869 6.79	0.51
mV	108	121	99	130	31	102

CHO=HYDROCARBON=THEOPHENOL

Table 7. Interactive Effect of pH, O₂, CO₂, and CHO on Transformed M. luteus pUC57-S-3M in Relation to Biosensoribility

INCUBATION TIME = 0 hr


	6U0mm	pH	M v
MLL. pUC57-S-3M = 0.2 ppm METAL			
COE	1.03E	2.85	35
08	5.021	7.01	21
0115211302	1 177	6.59	21
COHSON NOT?	5 179	7.05	23
MLL. pUC57-5-301 + 2 ppm METAL			
002	2.022	2.53	53
UK.	0.05	1.72	154
CERSCH 102	1.0%	2.66	41
COUSCI1 (CC2	5.17	7.06	45
MIL DUC57-S-SM_ NO METAL			
CO2	0.011	7	23
05	0.000	7.01	23
CEHISSH 402	2,032	2.92	35
Comban - C2	1.134	1.85	31
1000000 1100.2	0.164	1.499	101
Time = 18 hrs			
	6 Xion	ri I	e-V
M L p. JC 57-9-3V ± 0.2 ypen Metal			
602	0.231	50.5	37
07	0.986	5.8	77
CELISSH #02	1.411	8.35	żb
CoH65H HUC2	1.902	6.01	-12
ML pJC57-S-3N + 2 ppm METAL			
002	0.314	4.80	· 49
05	0.508	4.96	- 12
Cellbahl+O2	1.324	5.79	08
COHOSH HCC2	1.905	5.82	31
MLL DJC67 6 3W + NO METAL			
002	0.455	5.14	
2CO 2CO	0.435 0.753	5.14 5.82	
			141 54 17


NOTE, ppm = metal servers, alto , type of metals = Ni, Miles (3 = 8, #or (30103)11 = 1 M0180041800N = THEOPEENDE N.L. = Microsocia Liteus Redox potential is high under CO_2 atmosphere- CO_2 is a reductant

There is redox potential threshold around 300mV which indicates sensoribility for the metals ions.

Sulfur Clusters

- Sulfur is the bridging ligand in the Cu site of cytochrome oxidase
- Important componet of coenyzme A
- Sulfur is used in as H2S and can be used in place of water as an electron donor.
- Iron sulfur clusters-motifs found in metalloproteins e.g Ferrodoxins, NADH dehydrogenase, Coenzyme Q-cytochrome C reductase of the ETS.
- [2Fe2S]cluster-Bridging Ligands by
 - 2Fe-4 cysteine side chains
 - 2Fe-2 cysteine sulfur
 - 2Fe -2 nitrogen atoms of histidine
- [4Fe4S]Bridging Ligand by 4 sulfur of cysteine
- [3Fe4S]cluster

Conclusion

 Our BioBrick Assemblence, resulting in pUC57-S-3M was achieved.

Possiblity of Different assemblages can be configured different sensoribilty.

2. The pUC57-S-3M probe showed biosensoribility to different metal ion concentrations related to hydrocarbons.

•A much cheaper biological initiator in synthetic oil production.

•A possible better alternative to Microdiesel production.

•A biological Device that can be used in industry as a non persistant biological Chelater and complexation agent : a triplet function.

References

Cuero, R, Oullet T. Metal ions modulate gene expression and accumulation of the mycotoxins aflatoxin and zearalenone.J Appl Microbiol. 2005;98(3):598-605.

Holmes et al 1993b. Holmes D.S et al, 1993. Development of Biosensor to Measure Metal Ions Bioavailability in mining

and metal waste.pp659-666. In Biohydrometallurgical Technologies. Vol. II. A.E Torma, M.L Apel and C.L Brierle,

TMS, Warrendale, PA, USA. Eds.

Holmes, D.S. Dubey, U.K and Gongolli, 1993. Development of Biosensor for the detection of Mercury andCopper Ions.

Environ, Geochem. Health 16: 229-233.

Leonard G. Davis, Mark D. Dibner, James F Battey. Basic Methods in Molecular Biology. Elsevier Science Publishers.

1986, New York, Amsterdam and London.

Credits

- Cooperative Agricultural Research Center (CARC), Prairie View A&M University.
- IGEM Planning Committee

The Micro- "Coccus" Team.

The Prairie View A&M University IGEM Team 2006

STUDENTS: Jessica Berry, Leslie Caulfield, Christian Cruz, George LaBlanche, Laina Magaya, Fredrick Spikes RESEARCH INSTRUCTOR: Raul Cuero, Ph.D.

The students are grateful to Dr. Raul Cuero for his guidance and mentorship during the process of this research.