ETH Zurich 2006

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
(Reserved Parts in Registry)
(implementation)
Line 136: Line 136:
* [http://csb.inf.ethz.ch/igem-2006/matlab_sim_iptg.zip matlab_sim_iptg.zip] (<0.2M) →[[IPTG_1|simulation results]]
* [http://csb.inf.ethz.ch/igem-2006/matlab_sim_iptg.zip matlab_sim_iptg.zip] (<0.2M) →[[IPTG_1|simulation results]]
-
=== implementation ===
+
=== assembly ===
 +
 
 +
==== chemical sensing ====
 +
 
 +
;2006/10/03: Made LB-Agar plates with antibiotics
 +
;2006/10/04: Transformed cells, plated them
 +
;2006/10/05: Found plates empty after 18h on the table, put into incubator at 37°C
 +
;2006/10/06: picked cultures onto fresh plates
== [[ETH_2006_Docs_And_Links|Useful Documents & Links]] ==
== [[ETH_2006_Docs_And_Links|Useful Documents & Links]] ==
[[ETH_2006_Docs_And_Links|see here]]
[[ETH_2006_Docs_And_Links|see here]]

Revision as of 14:21, 6 October 2006

ETH Zurich

Contents

Coordination

TODOs

Modeling

  • Parts Model the whole System with Sensing, Pop's duplexer and Half adder (Marco and Franz)
  • Model whether a different strength of input is necessary for the AND and XOR Gates (Who?)
  • Finish modeling the second AND Gate and find a biological way to implement it and write the DNA and order it (Marco and Robert)

Lab

Responsible: Robert for the preparatory experiments, Olga for the assembly and testing of the gates.

  • Read the literature on the XOR and AND Gates, check carefully for strains needed and compatibility of the parts (Who?)
  • Prepare a protocol for parts assembly (Olga)
  • Assembly of the light sensing device from the parts we received from UCSF Voigt's lab (Arthur)
  • Assembly of the chemical sensing device (Franz, Dimo, Robert, Marco, Marko, Olga)

Documentation

Responsible: Alexandra for the registry, Franz for the presentation, Arthur for the Wiki.

  • enter lab experience report to registry
  • restructure the Wiki, identify lacking information and find people who can provide it (Arthur)
  • Make a picture of the whole model with te different parts in it (Alexandra)
  • Make a drawing of the DNA to have an overview of which parts will be consecutively on the same DNA piece (Alexandra)
  • Find promoters for the Pops duplexer (2 promoters in total) (Michael)

Schedule

Available as Google Calendar: iGEM 2006 ETH Zurich

Thu 20.7., 1700: kickoff meeting in CNB E 121
27.7.-3.8. 1st group phase
Define project in more detail within two groups
Thu 27.7., 1700: meeting of entire group to share ideas
Thu 3.8., 1700: decision on final project
15.8. 1700
Tutorial "Modelling of AND gate"
Until 20.8.
Finalize DNA design, order it
September,October
Implement design (registry bio-bricks, ordered DNA)
27.9.
Fix the flight dates and send the proposed flights to Jörg
23.10.
Latest point to start getting our presentation going and to finish the iGEM wiki documentation
30.10.
Project documentation on the Wiki has to be complete
4./5.11.
Jamboree in Boston

Participants

ETH Team 2006


Marco, Alexandra, Arthur, Olga, Dimo, Marko, Robert,


Franz, Michael


Progress report and documentation

Initial project ideas

The fruits of some brainstorming and research

proposed projects

We split up the whole team into two groups, each proposed a project after these two weeks.

It was decided to further pursue the Half adder project idea.

filling in the details

Reserved parts in the registry

We have already reserved parts for the adder and the gates in the registry the description of which are still tentative:

Chemical Sensing Device

Suggestions for Chemical Sensing Device:


modeling

Matlab scripts for ODE simulation

modular scripts
  • contains a createXXX() script for each module. the created module contains
    • function handles for reaction rates: r
    • stoichiometric matrix: N
    • constants (inside of the function handles)
    • state (concentration) changes (the ode dy values) can be computed by: N · r
  • modules can be connected using the createInOutConnector() script. the result is again a module, consisting of the connected basic modules.
  • sim_1_1 and sim_1_2 can be used to simulate modules with 1 input/1 output and 1 input/2 outputs respectively.
  • both basic modules and compound (connected) modules can be simulated
  • simulations contains the first samples, simulating
  • scripts: matlab_modules.zip (<0.1M)
old scripts

unzip the file, each zip file contains 2 files: sim_xxx.m and ode_xxx.m.

ode_xxx.m : contains the differential equations, i.e. the model
sim_xxx.m : sets the parameters, calls the simulator and plots the result (this is the one to run, but the other is also needed).

As a result of the meeting on August 17, we will from now on concentrate on the AND versions 2 and 3.

Sensoring

assembly

chemical sensing

2006/10/03
Made LB-Agar plates with antibiotics
2006/10/04
Transformed cells, plated them
2006/10/05
Found plates empty after 18h on the table, put into incubator at 37°C
2006/10/06
picked cultures onto fresh plates

Useful Documents & Links

see here

Personal tools
Past/present/future years