UT Austin

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
Line 24: Line 24:
== Light Wires ==
== Light Wires ==
-
We are looking to build circuits which demonstrate the unique regulatory capabilites of the light dependent system developed by the UT/UCSF team last year.  One such instantiation is the original edge detector project from last year which we coming close to finishing (see below).  The idea which came out on top of this year's heap was to transform a genetically identical lawn of ''E.coli'' into a biochemical circuit board, using light to dictate the conductive potential of each ~1x3 micron segment of surface area.
+
We are looking to build circuits which demonstrate the unique regulatory capabilites of the light dependent system developed by the UT/UCSF team last year.  One such instantiation is the original [http://parts2.mit.edu/r/parts/partsdb/view.cgi?part_id=5407 Edge Detector] from last year which we are  finally finishing.   
 +
 
 +
The idea which came out on top of this year's heap was to transform a genetically identical lawn of ''E.coli'' into a biochemical circuit board, using light to dictate the conductive potential of each ~1x3 micron segment of surface area.  All cells on the lawn will carry two biochemical signal amplifiers: a 3OC6HSL amplifier [http://parts2.mit.edu/r/parts/partsdb/view.cgi?part_id=5414 I15030], and a pseudomonas autoinducer (AI-1) amplifier [http://parts2.mit.edu/r/parts/partsdb/view.cgi?part_id=5598 J13030].  These signal amplifiers will be inactive in certain locations of the plate and active in others.  We will dictate which ''E.coli'' on the plate have active circuits with light, by using [http://parts2.mit.edu/r/parts/partsdb/view.cgi?part_id=5597 J13100] to strongly repress these two signal amplifiers in the dark.

Revision as of 05:39, 1 November 2005

The UT Austin team, like last year, is extremely informal. We have no classes nor particularly organized meetings. Anyone who wishes to contribute is welcome to do so. Thanks to the natural enthusiasm of our team and occasional whip cracking from Andy we have made some interesting progress.

Last year we planned on building a light activated edge detector. Thanks to the the incredible contribution of an engineered light detector from Anselm Levskaya at Voigt Lab UCSF we were able to take bacterial photographs (publication pending). This was only the first step in our planned goal and in fact we are still working on building the edge detector.

This year we have several project plans which, if they don't self-assemble into green goo and eat the molecular biology building, should be fairly amusing. Being at heart a bunch of hackers, we believe that the greatest contribution to the field will come from actual experiments and thus we are plowing ahead with our experiments while or before modeling our system. Descriptions to come.

The UT Austin team is:

  • Aaron Chevalier
  • Dan Blick
  • Eric Davidson
  • Jeff Tabor
  • Laura Lavery
  • Matt Levy
  • Rachel Haurwitz
  • Zack Booth Simpson



Advisors:


Light Wires

We are looking to build circuits which demonstrate the unique regulatory capabilites of the light dependent system developed by the UT/UCSF team last year. One such instantiation is the original Edge Detector from last year which we are finally finishing.

The idea which came out on top of this year's heap was to transform a genetically identical lawn of E.coli into a biochemical circuit board, using light to dictate the conductive potential of each ~1x3 micron segment of surface area. All cells on the lawn will carry two biochemical signal amplifiers: a 3OC6HSL amplifier I15030, and a pseudomonas autoinducer (AI-1) amplifier J13030. These signal amplifiers will be inactive in certain locations of the plate and active in others. We will dictate which E.coli on the plate have active circuits with light, by using J13100 to strongly repress these two signal amplifiers in the dark.

Personal tools
Past/present/future years