Turn Me On, Lactones! New Tools For Self-Organized Pattern Formation

University of Cambridge iGEM 2006

- New Tools for Self-organised Pattern
 Formation
- Two possible systems the tools could be used for are:
 - Bi-directional signalling
 - A population based bi-stable switch

Bi-directional Signalling

TYPE 2 CELL

Bi-directional Signalling

Bi-directional Signalling

Project Overview

New tools for self-organised pattern formation

Genetic Circuit

TYPE 1 CELL

TYPE 2 CELL

TYPE 1 CELL

TYPE 1 CELL

TYPE 1 CELL

TYPE 1 CELL

TYPE 1 CELL

AHL Sender Cassettes: No. 1

Lux autoinducer: 1681 bp P_{lac} P_{lux} luxR

BBa_J28031

AHL Sender Cassettes: No. 1

Lux autoinducer: 1681 bp

BBa_J28031

AHL Sender Cassettes: No. 2

Las autoinducer: 1768 bp

BBa_J28032

Circuit Properties

Circuit Properties

- Non-cell-autonomous behaviour
- **<u>Bi-directionality</u>** through cross-wiring of lux and las
- *Equivalence* of contesting populations
- *Tunable* signalling kinetics
- *Feedback coupling* of receiver response to sender
- <u>Complex signalling dynamics</u>, directly and vividly visualised

Objectives

Objectives

- Model dynamics of a single cell equipped with the genetic circuit

Objectives

- Model dynamics of a single cell equipped with the genetic circuit
- Observe behaviours such as auto-induction and switching

Objectives

- Model dynamics of a single cell equipped with the genetic circuit
- Observe behaviours such as auto-induction and switching

Objectives

- Model dynamics of a single cell equipped with the genetic circuit
- Observe behaviours such as auto-induction and switching

Objectives

- Model dynamics of a single cell equipped with the genetic circuit
- Observe behaviours such as auto-induction and switching

Assumptions

- Type 1 and type 2 cells have identical dynamics

Objectives

- Model dynamics of a single cell equipped with the genetic circuit
- Observe behaviours such as auto-induction and switching

- Type 1 and type 2 cells have identical dynamics
- Luxr and Lasr genes are constitutively expressed

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

• Neighbour-dependent => analogous to our system

Conway's Game of Life

• Neighbour-dependent => analogous to our system

Assumptions

• No cells die

Conway's Game of Life

• Neighbour-dependent => analogous to our system

- No cells die
- 2 types of cells are identical

Conway's Game of Life

• Neighbour-dependent => analogous to our system

- No cells die
- 2 types of cells are identical
- Colours change at boundary

Conway's Game of Life

• Neighbour-dependent => analogous to our system

- No cells die
- 2 types of cells are identical
- Colours change at boundary

Conway's Game of Life

• Neighbour-dependent => analogous to our system

- No cells die
- 2 types of cells are identical
- Colours change at boundary

Conway's Game of Life

• Neighbour-dependent => analogous to our system

- No cells die
- 2 types of cells are identical
- Colours change at boundary

Simulation Program

E. coli MC1000 0.5% Bactoagar

E. coli MG1655 0.3% Bactoagar

E. coli XL-1 Blue 0.3% Bactoagar

All are incubated at 30°C overnight

Four inoculations of XL-1 Blue Cells

Four inoculations of XL-1 Blue Cells

E. Coli MC-1000 and XL-1 Blue

Four inoculations of XL-1 Blue Cells E. Coli MC-1000 and XL-1 Blue

Differential cell motility \rightarrow Spontaneous pattern formation

Fluorescent Patterns

Bioassay For AHL production

Chromobacterium violaceum CVO26 can be used as a biosensor to detect AHL production

Can distinguish between AHL molecules with N-acyl side-chains from C4-C8 in length and C10-C14 in length

McClean et al, Microbiology143, 1997

Bioassay For AHL production

Chromobacterium violaceum CVO26 can be used as a biosensor to detect AHL production

Can distinguish between AHL molecules with N-acyl side-chains from C4-C8 in length and C10-C14 in length

McClean et al, Microbiology143, 1997

Cell-cell Communication

The <u>interaction</u> of AHL sender cells and AHL receiver cells on a swimming plate; with <u>cell</u> <u>motility</u> defining <u>zones of response</u> leads to

Patterning Through Communication

Population based bi-stable switch

1. Biased inoculations

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time

- Biased inoculations Greens >> Reds
- 2. Cells replicate over time

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time
- 3. Green cells outnumber a few red cells convert

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time
- 3. Green cells outnumber a few red cells convert

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time
- 3. Green cells outnumber a few red cells convert
- 4. More conversions

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time
- 3. Green cells outnumber a few red cells convert
- 4. More conversions

- 1. Biased inoculations Greens >> Reds
- 2. Cells replicate over time
- 3. Green cells outnumber a few red cells convert
- 4. More conversions
- 5. Green cells dominate,

Genetic Circuitry

Applications

- Understanding development
- Understanding tissue invasion and metastasis
- Understanding bio-films
- Tissue engineering

Cambridge University iGEM 2006

Supervisors

Jim Ajioka | Jim Haseloff | Duncan Rowe | Gos Micklem | Jorge Goncalves

Contributors

James Brown | Jason Chin | Gillian Fraser | Glenn Vinnicombe | Keith Johnstone | Matthew Levin | Pentau Liu | Jan Lowe | Rita Monson

Acknowledgements

- The Gatsby Charitable Foundation
- Cambridge University Engineering Department
- European Union (Synbiocomm)
- Cambridge-MIT Institute
- DNA 2.0 Incorporation
- Lucigen Corporation

