Template:ETH Modeling Formulas

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
m
 
(18 intermediate revisions not shown)
Line 1: Line 1:
-
'''in progress'''
+
To get our models into a form which can be simulated, we needed to transform the ''wiring diagrams'' into a set of ODEs (ordinary differential equations), which in our case will be non-linear.
 +
 
 +
For every concerned species <tt>X</tt>, we write
 +
d[X]/dt = production - consumption
 +
 
 +
For enzymatic transformation of substrate S into product P (catalyzed by enzyme E), we write
 +
 
 +
        k<sub>+1</sub>      k<sub>2</sub>
 +
S + E <==> E&bull;S --> P + E
 +
        k<sub>&minus;1</sub>
 +
 +
d[S]/dt  = &minus;k<sub>+1</sub>[S][E] + k<sub>&minus;1</sub>[E&bull;S]    <sub> </sub>    &minus; d<sub>S</sub>[S]
 +
d[E]/dt  = &minus;k<sub>+1</sub>[S][E] + k<sub>&minus;1</sub>[E&bull;S] + k<sub>2</sub>[E&bull;S] &minus; d<sub>E</sub>[E]
 +
d[E&bull;S]/dt =  k<sub>+1</sub>[S][E] &minus; k<sub>&minus;1</sub>[E&bull;S] &minus; k<sub>2</sub>[E&bull;S] &minus; d<sub>ES</sub>[E&bull;S]
 +
d[P]/dt  =                  <sub>    </sub> + k<sub>2</sub>[E&bull;S] &minus; d<sub>P</sub>[P]
 +
 +
[S]  : substrate concentration
 +
[E]  : enzyme conc.
 +
[E&bull;S] : concentration of enzyme-substrate complex
 +
[P]  : product concentration
 +
 +
kinetic constants:
 +
  k<sub>k+1</sub> : building enzyme-substrate complex (forward)
 +
  k<sub>k&minus;1</sub> : resolving enzyme-substrate complex (backward)
 +
  k<sub>2  </sub> : product formation
 +
  d<sub>XXX</sub> : degradation constants
 +
 
 +
For constitutive transcription, we have constant production rate and simply write
 +
d[M]/dt = k<sub>tr</sub>&bull;u &minus; d<sub>M</sub>[M]
 +
 +
[M]<sub>  </sub>: mRNA concentration
 +
k<sub>tr</sub>  : kinetic constant (transcription)
 +
u<sub>  </sub>  : system input, e.g. transcription rate (&cong;PoPS)
 +
d<sub>M </sub>  : degradation constant for mRNA
 +
 
 +
A transcriptional regulatory module can be described by and ODE of the following form:
 +
                        1
 +
d[M]/dt = k<sub>tr</sub> ( a + &minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus; ) &minus; d<sub>M</sub>[M]
 +
                    1 + (K/[S])<sup>&alpha;&bull;n</sup>
 +
 +
[M]<sub>  </sub>: mRNA concentration
 +
k<sub>tr</sub>  : kinetic constant (transcription)
 +
a<sub>  </sub>  : constitutive portion, 0 &le; a &lt; 1
 +
[S]<sub>  </sub>: inducer (&alpha;=+1) / repressor (&alpha;=&minus;1) concentration
 +
K<sub>  </sub>  : hill constant
 +
n<sub>  </sub>  : hill coefficient
 +
&alpha;<sub>  </sub>  : &alpha;=+1 for induction, &alpha;=&minus;1 for repression
 +
d<sub>M </sub>  : degradation constant for mRNA
 +
 
 +
Finally, translation is usually modeled like this:
 +
d[P]/dt = k<sub>tl</sub>[M] &minus; d<sub>P</sub>[P]
 +
 +
[P]<sub>  </sub>: product (protein) concentration
 +
[M]<sub>  </sub>: mRNA concentration
 +
k<sub>tl</sub>  : kinetic constant (translation)
 +
d<sub>P </sub>  : degradation constant for protein P
 +
 
 +
References:
 +
* ''Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations''. Emery D. Conrad and John J. Tyson<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press].
 +
* ''Synthetic Gene Regulatory Systems''. Mads Kaern and Ron Weiss<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press].

Latest revision as of 11:41, 20 November 2006

To get our models into a form which can be simulated, we needed to transform the wiring diagrams into a set of ODEs (ordinary differential equations), which in our case will be non-linear.

For every concerned species X, we write

d[X]/dt = production - consumption

For enzymatic transformation of substrate S into product P (catalyzed by enzyme E), we write

       k+1      k2
S + E <==> E•S --> P + E
       k−1

d[S]/dt   = −k+1[S][E] + k−1[E•S]           − dS[S]
d[E]/dt   = −k+1[S][E] + k−1[E•S] + k2[E•S] − dE[E]
d[E•S]/dt =  k+1[S][E] − k−1[E•S] − k2[E•S] − dES[E•S]
d[P]/dt   =                       + k2[E•S] − dP[P]

[S]   : substrate concentration
[E]   : enzyme conc.
[E•S] : concentration of enzyme-substrate complex
[P]   : product concentration

kinetic constants:
  kk+1 : building enzyme-substrate complex (forward)
  kk−1 : resolving enzyme-substrate complex (backward)
  k2   : product formation
  dXXX : degradation constants

For constitutive transcription, we have constant production rate and simply write

d[M]/dt = ktr•u − dM[M]

[M]  : mRNA concentration
ktr  : kinetic constant (transcription)
u    : system input, e.g. transcription rate (≅PoPS)
dM   : degradation constant for mRNA

A transcriptional regulatory module can be described by and ODE of the following form:

                       1
d[M]/dt = ktr ( a + −−−−−−−−−−−−−− ) − dM[M]
                    1 + (K/[S])α•n

[M]  : mRNA concentration
ktr  : kinetic constant (transcription)
a    : constitutive portion, 0 ≤ a < 1
[S]  : inducer (α=+1) / repressor (α=−1) concentration
K    : hill constant
n    : hill coefficient
α    : α=+1 for induction, α=−1 for repression
dM   : degradation constant for mRNA

Finally, translation is usually modeled like this:

d[P]/dt = ktl[M] − dP[P]

[P]  : product (protein) concentration
[M]  : mRNA concentration
ktl  : kinetic constant (translation)
dP   : degradation constant for protein P

References:

  • Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations. Emery D. Conrad and John J. Tyson
    in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.
    Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press].
  • Synthetic Gene Regulatory Systems. Mads Kaern and Ron Weiss
    in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.
    Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press].
Personal tools
Past/present/future years