McGill University 2006

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
Line 31: Line 31:
<h3><ul><li>''' Team 2: Repressilator'''</ul></h3>
<h3><ul><li>''' Team 2: Repressilator'''</ul></h3>
-
The Elowitz Repressilator attempts to decrease the loss of standard oscillations that previous repressilators faced by utilizing quorum sensing as a means of synchronizing and maintaining standard oscillations.  We expanded on this theory by adding YFP and CFP to allow a visual confirmation of the oscillation, and a TetR promoter infront of the LuxR gene and cI after the LuxI gene.  Our hopes were that this would assist in standardizing the oscillation of the bacteria.
+
The Elowitz Repressilator attempts to decrease the loss of standard oscillations that previous repressilators faced by utilizing quorum sensing as a means of synchronizing and maintaining standard oscillations.  We expanded on this theory by adding YFP and CFP to allow a visual confirmation of the oscillation, and a TetR promoter in front of the LuxR gene and cI after the LuxI gene.  Our hopes were that this would assist in standardizing the oscillation of the bacteria.
[[Theory Behind the Oscillator|Theory Behind the Oscillator]]
[[Theory Behind the Oscillator|Theory Behind the Oscillator]]

Revision as of 18:00, 28 October 2006

Banner.gif


Welcome to the McGill Wiki! Basically, we're a team of 12 undergrads, 1 grad student, and 1 professor who like to have fun and clone things in our spare time. McGill University is located in Montreal, Quebec, which has given us wonderful opportunities to balance lab work with festivals and general craziness. iGEM has been a great opportunity to get lab experience while having the freedom to be creative, and we look forward to meeting the other teams at the jamboree!

Clip image002.jpgDancing e copyzz.jpg



Projects

  • Team 1: Split YFP

The idea behind the project is fluorescence complementation, which involves the joining of two leucine zipper proteins Jun and Fos each fused to a half terminus of YFP. Subsequently, both of these chimeric proteins were fused to a beta gene that codes for a membrane protein. The project involved performing a PCR reaction to produce two inserts, the N-terminus and the C-terminus of the YFP, and then ligating these inserts into 2 vectors, containing the Jun-beta and the Fos-beta respectively. We transformed two cell populations, one expressing Jun-beta-YFPN and the other expressing Fos-beta-YFPC.These two cell populations were combined and the two vectors were then expressed, ideally resulting in the fusion of the Jun and Fos leucine zipper proteins on the cell membrane when the cells are in close contact. This would result in the binding of the two halves of the YFP protein resulting in flourescence.

  • Team 2: Repressilator

The Elowitz Repressilator attempts to decrease the loss of standard oscillations that previous repressilators faced by utilizing quorum sensing as a means of synchronizing and maintaining standard oscillations. We expanded on this theory by adding YFP and CFP to allow a visual confirmation of the oscillation, and a TetR promoter in front of the LuxR gene and cI after the LuxI gene. Our hopes were that this would assist in standardizing the oscillation of the bacteria.

Theory Behind the Oscillator

Methods and Materials

Results


Lab Procedures


Club

Just for Fun

Poutine.gif


Personal tools
Past/present/future years