Ljubljana, Slovenia 2006/Home

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
Line 19: Line 19:
{|
{|
|-valign="center" align="justify"
|-valign="center" align="justify"
-
|border="5" solid #affaaa" cellspacing="1" cellpadding="1" style="border:1px solid #affaaa; background:#fffaf0" | <font style="font size="3" font face="Times New Roman""> <b>Mammalian systems can be a subject of cellular engineering similarly to bacterial cells. We decided to tinker with the existing cell signalling network of the response to the bacterial infection. Binding of bacterial components (PAMPs – Pathogen associated molecular patterns) to a family of Toll-like receptors activates the cells of the immune system but the exaggerated response may lead to systemic inflammation and sepsis which is often fatal. We designed a feedback loop, which inhibits the signalling cascade at the »weak spot« - [[Ljubljana, Slovenia 2006/Terms & References#Terms|MyD88]], a consensus adaptor protein of the Toll-like receptors. A mathematical model of cell activation with engineered feedback loop was constructed, which predicts the decrease of the cellular activation after the repeated stimulation. Twenty six new BrioBricks were constructed specially for the mammalian system. We have experimentally confirmed the function of the feedback device by detecting the inhibition of cellular activation after the repeated stimulation. Cell activation decreased without completely deleting the responsiveness to the bacterial infection, thus our engineered cell system represents a type of artificial immunotolerance.</b>
+
|border="5" solid #affaaa" cellspacing="1" cellpadding="1" style="border:1px solid #affaaa; background:#cedff2" | <font style="font size="3" font face="Times New Roman""> <b>Mammalian systems can be a subject of cellular engineering similarly to bacterial cells. We decided to tinker with the existing cell signalling network of the response to the bacterial infection. Binding of bacterial components (PAMPs – Pathogen associated molecular patterns) to a family of Toll-like receptors activates the cells of the immune system but the exaggerated response may lead to systemic inflammation and sepsis which is often fatal. We designed a feedback loop, which inhibits the signalling cascade at the »weak spot« - [[Ljubljana, Slovenia 2006/Terms & References#Terms|MyD88]], a consensus adaptor protein of the Toll-like receptors. A mathematical model of cell activation with engineered feedback loop was constructed, which predicts the decrease of the cellular activation after the repeated stimulation. Twenty six new BrioBricks were constructed specially for the mammalian system. We have experimentally confirmed the function of the feedback device by detecting the inhibition of cellular activation after the repeated stimulation. Cell activation decreased without completely deleting the responsiveness to the bacterial infection, thus our engineered cell system represents a type of artificial immunotolerance.</b>
| [[Image:model5.gif|right|thumb|450px]]
| [[Image:model5.gif|right|thumb|450px]]
|}
|}

Revision as of 21:27, 28 October 2006

Logo-si1.gif Fotka1b.jpg Logo-si1.gif


Engineered Human Cells: SAY NO TO SEPSIS

Line-si4.jpg

Background and Signalling Pathway
Project
Methods
Results & Conclusions
Terms & References
Team members

Line-si3.jpg

Mammalian systems can be a subject of cellular engineering similarly to bacterial cells. We decided to tinker with the existing cell signalling network of the response to the bacterial infection. Binding of bacterial components (PAMPs – Pathogen associated molecular patterns) to a family of Toll-like receptors activates the cells of the immune system but the exaggerated response may lead to systemic inflammation and sepsis which is often fatal. We designed a feedback loop, which inhibits the signalling cascade at the »weak spot« - MyD88, a consensus adaptor protein of the Toll-like receptors. A mathematical model of cell activation with engineered feedback loop was constructed, which predicts the decrease of the cellular activation after the repeated stimulation. Twenty six new BrioBricks were constructed specially for the mammalian system. We have experimentally confirmed the function of the feedback device by detecting the inhibition of cellular activation after the repeated stimulation. Cell activation decreased without completely deleting the responsiveness to the bacterial infection, thus our engineered cell system represents a type of artificial immunotolerance.
Model5.gif

We would like to express our thanks to the Sponsors

[http://www.ki.si/ http://parts2.mit.edu/wiki/images/9/90/Logo_ki2.jpg] [http://www.fkkt.uni-lj.si/en/ http://www.fkkt.uni-lj.si/img/menuleft_logo_unilj.gif] [http://www.lek.si/ http://parts2.mit.edu/wiki/images/0/09/Lek2.jpg]
EU Synbiocomm (thank you Sven)


and Donators
Ad Futura, Krka pharmaceutical company, Mediline, Farmadent

Personal tools
Past/present/future years