Template:ETH Modeling Formulas

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
         k<sub>+1</sub>      k<sub>2</sub>
         k<sub>+1</sub>      k<sub>2</sub>
-
  X + E <==> X&sdot;E --> P + E
+
  X + E <==> X&bull;E --> P + E
-
         k<sub>-1</sub>
+
         k<sub>&minus;1</sub>
   
   
-
  d[X]/dt = -k<sub>+1</sub>[X][E] + k<sub>-1</sub>[X&sdot;E]          - d<sub>X</sub>[X]
+
  d[X]/dt = &minus;k<sub>+1</sub>[X][E] + k<sub>&minus;1</sub>[X&bull;E]          &minus; d<sub>X</sub>[X]
-
  d[E]/dt = -k<sub>+1</sub>[X][E] + k<sub>-1</sub>[X&sdot;E] + k<sub>2</sub>[X&sdot;E] - d<sub>E</sub>[E]
+
  d[E]/dt = &minus;k<sub>+1</sub>[X][E] + k<sub>&minus;1</sub>[X&bull;E] + k<sub>2</sub>[X&bull;E] &minus; d<sub>E</sub>[E]
-
  d[P]/dt =                     + k<sub>2</sub>[X&sdot;E] - d<sub>P</sub>[P]
+
  d[P]/dt =                       + k<sub>2</sub>[X&bull;E] &minus; d<sub>P</sub>[P]

Revision as of 11:30, 30 October 2006

To get our models into a form which can be simulated, we needed to transform the wiring diagrams into a set of ODE's (ordinary differential equations), which in our case will be non-linear.

For every concerned species X, we write

d[X]/dt = production - consumption

For enzymatic transformation of substrate X into product P (catalyzed by enzyme E), we write

       k+1      k2
X + E <==> X•E --> P + E
       k−1

d[X]/dt = −k+1[X][E] + k−1[X•E]           − dX[X]
d[E]/dt = −k+1[X][E] + k−1[X•E] + k2[X•E] − dE[E]
d[P]/dt =                       + k2[X•E] − dP[P]
Personal tools
Past/present/future years