About iGEM

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
 
(4 intermediate revisions not shown)
Line 3: Line 3:
<hr>   
<hr>   
-
<div style="width:75%;padding: 10px; border: 2px solid #2171B8;">
+
<div style="width:75%; padding: 10px; border: 2px solid #2171B8; background:Lavender">
-
[[Image:Igem questionmark.png|50px|left]]
+
[[Image:Igem questionmark.png|45px|left]]
-
Can simple biological systems be built from standard, interchangeable parts and operated in living cells? <br>
+
'''iGEM addresses the question:''' Can simple biological systems be built from standard, interchangeable parts and operated in living cells?  
-
...Or is biology simply too complicated to be engineered in this way?  
+
Or is biology simply too complicated to be engineered in this way?  
</div>  
</div>  
-
We believe in the possibility of engineered biological systems, but the only way to test such an engineering hypothesis is to try it practically.  The iGEM competition facilitates this by asking students to design and build genetic machines.  This generates practical data on the feasibility of engineering biology, and also on best practices.  It also provides a powerful educational experience for the students working to overcome the many technical challenges.
+
<hr>
 +
<div style="width:75%; padding: 10px; border: 1px solid Lightgrey; background:White">
-
Our broader goals are:
+
The only way to answer this is to actually ''try to engineer'' biological devices.
-
* To enable the systematic engineering of biology;
+
The iGEM competition facilitates this by providing a library of standardized parts (we call these parts ''BioBricks'') to students, and asking them to design and build genetic machines with them.  Of course, students are welcome (and encouraged!) to make their own BioBricks as well.
-
* To promote the open and transparent development of tools for engineering biology; and
+
-
* To help construct a society that can productively apply biological technology
+
 +
Information about BioBricks, and a toolkit to make and manipulate them, is provided by the Registry of Standard Biological Parts, or simply, the [http://partsregistry.org Registry].  This is a core resource for the iGEM program, and one that has been evolving rapidly to meet the needs of the program.
-
== The Registry ==
+
Beyond trying to answer the question above, our broader goals include:
-
At the core of these activities is the notion of a standard biological part that is well specified and able to be paired with other parts into [http://partsregistry.org/cgi/htdocs/Assembly/index.cgi subassemblies and whole systems]. Once the parameters of these parts are determined and standardized, simulation and design of genetic systems will become easier and more reliable. The [http://partsregistry.org Registry of Standard Biological Parts] has been created to achieve these goals.
+
* To enable the systematic engineering of biology
 +
* To promote the open and transparent development of tools for engineering biology
 +
* And to help construct a society that can productively apply biological technology
-
== Program History ==
+
'''Are we any closer to finding an answer to our question?'''  In just three years, iGEM teams managed to partially or completely build a variety of systems, from biosensors to biological photographic film, so it's looking positive that engineering biology ''is possible''.  More data on other exciting projects was presented [http://www.igem2006.com/jamboree.htm at the 2006 Jamboree in November].
 +
</div>
 +
<hr>
 +
[[iGEM_staff|The people behind iGEM]] | [[iGEM_history|iGEM History]] | [[iGEM_contact|Contact us]]
-
During MIT's [[Iap 2003|Independent Activity Periods (IAP) of January 2003]], student teams designed biological oscillators coupled to fluorescent reporters. These genetic blinkers were intended to improve on Elowitz's Repressilator. One team coupled two oscillators to even out the oscillations. Another used cell-cell signaling to coordinate the oscillators in a colony. During the January  [[Iap 2004|2004 IAP]], teams designed genetic systems to create cellular patterns varying from bull’s-eyes to polka dots and even dynamic designs where cells swim together. From these designs, standard biological parts were designed and synthesized.
 
-
Summer of [[Igem 2004|2004 brought the first Synthetic Biology Competition]]. Student teams from five schools (Princeton, MIT, Caltech, UT Austin, and Boston University) competed to build cellular state machines and counters. The teams came together for a jamboree in early November to compare their results. The most graphic project was "photographic biofilm" that could capture an image.
+
<hr>
-
 
+
<font size=1; color="LightSlateGray">iGEM Competition c/o 32 Vassar Street, Room 314, Cambridge, MA 02139 (617) 258 5244 | <font size=1; color="Green"> Join iGEM </font> | Support iGEM | [[Main_Page|Home]]</font>
-
In the [[Igem 2005|summer of 2005]], student teams from thirteen schools (Berkeley, Caltech, Cambridge UK, Davidson, ETH Zurich, Harvard, MIT, Oklahoma, Penn State, Princeton, Toronto, UCSF, and UT Austin) participated in the 2005 International Genetically Engineered Machine (iGEM) competition. Later, during the first weekend of November, over 150 of these students, instructors, and PIs came together for a jamboree to share and celebrate their work.
+
-
 
+
-
The [[Igem 2005]] student projects displayed the designs of chemotaxis regulation systems, cell-cell genetic communications systems, cellular/biological wires, thermometers, biological sketch pads (drawing systems), cellular relay races, a digital counter, and many more.
+
-
 
+
-
While at this early stage none of the projects were fully functional, many of the required subsystems demonstrated correct operation. Some of the student teams are continuing to work on their projects. One surprising result of [[Igem 2005]] is that several of the schools have begun to incorporate Synthetic Biology into their undergraduate curriculum based on work from the 2005 event. Schools are now working on their [[Schools Participating in iGEM 2006|iGEM summer 2006]].
+

Latest revision as of 22:39, 16 February 2007

iGEM - The international Genetically Engineered Machine competition


Igem questionmark.png

iGEM addresses the question: Can simple biological systems be built from standard, interchangeable parts and operated in living cells? Or is biology simply too complicated to be engineered in this way?


The only way to answer this is to actually try to engineer biological devices.

The iGEM competition facilitates this by providing a library of standardized parts (we call these parts BioBricks) to students, and asking them to design and build genetic machines with them. Of course, students are welcome (and encouraged!) to make their own BioBricks as well.

Information about BioBricks, and a toolkit to make and manipulate them, is provided by the Registry of Standard Biological Parts, or simply, the Registry. This is a core resource for the iGEM program, and one that has been evolving rapidly to meet the needs of the program.

Beyond trying to answer the question above, our broader goals include:

  • To enable the systematic engineering of biology
  • To promote the open and transparent development of tools for engineering biology
  • And to help construct a society that can productively apply biological technology

Are we any closer to finding an answer to our question? In just three years, iGEM teams managed to partially or completely build a variety of systems, from biosensors to biological photographic film, so it's looking positive that engineering biology is possible. More data on other exciting projects was presented at the 2006 Jamboree in November.


The people behind iGEM | iGEM History | Contact us



iGEM Competition c/o 32 Vassar Street, Room 314, Cambridge, MA 02139 (617) 258 5244 | Join iGEM | Support iGEM | Home

Personal tools
Past/present/future years