Template:ETH Modeling Formulas

From 2006.igem.org

(Difference between revisions)
Jump to: navigation, search
Line 27: Line 27:
  d<sub>M </sub>  : degradation konstant for mRNA
  d<sub>M </sub>  : degradation konstant for mRNA
-
A transcriptional regulatory module can be described by the following ODE's:
+
A transcriptional regulatory module can be described by and ODE of the following form:
                         1
                         1
-
  d[M]/dt = k<sub>tr</sub> ( a + &minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus; )
+
  d[M]/dt = k<sub>tr</sub> ( a + &minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus;&minus; ) &minus; d<sub>M</sub>[M]
                     1 + (K/[S])<sup>&alpha;&bull;n</sup>
                     1 + (K/[S])<sup>&alpha;&bull;n</sup>
   
   
Line 40: Line 40:
  &alpha;<sub>  </sub>  : &alpha;=+1 for induction, &alpha;=&minus;1 for repression
  &alpha;<sub>  </sub>  : &alpha;=+1 for induction, &alpha;=&minus;1 for repression
  d<sub>M </sub>  : degradation konstant for mRNA
  d<sub>M </sub>  : degradation konstant for mRNA
 +
 +
Finally, translation is usually modelled like this:
 +
d[P]/dt = k<sub>tl</sub>[M] &minus; d<sub>P</sub>[P]
 +
 +
[P]<sub>  </sub>: product (protein) concentration
 +
[M]<sub>  </sub>: mRNA concentration
 +
k<sub>tl</sub>  : kinetic konstant (translation)
 +
d<sub>P </sub>  : degradation konstant for protein P

Revision as of 12:05, 30 October 2006

To get our models into a form which can be simulated, we needed to transform the wiring diagrams into a set of ODE's (ordinary differential equations), which in our case will be non-linear.

For every concerned species X, we write

d[X]/dt = production - consumption

For enzymatic transformation of substrate X into product P (catalyzed by enzyme E), we write

       k+1      k2
X + E <==> X•E --> P + E
       k−1

d[X]/dt = −k+1[X][E] + k−1[X•E]           − dX[X]
d[E]/dt = −k+1[X][E] + k−1[X•E] + k2[X•E] − dE[E]
d[P]/dt =                       + k2[X•E] − dP[P]

kinetic constants:
  kk+1 : building enzyme-substrate complex (forward)
  kk−1 : resolving enzyme-substrate complex (backward)
  k2   : product formation
  dXXX : degradation constants

For constitutive transcription, we have constant production rate and simply write

d[M]/dt = ktr − dM[M]

[M]  : mRNA concentration
ktr  : kinetic konstant (transcription)
dM   : degradation konstant for mRNA

A transcriptional regulatory module can be described by and ODE of the following form:

                       1
d[M]/dt = ktr ( a + −−−−−−−−−−−−−− ) − dM[M]
                    1 + (K/[S])α•n

[M]  : mRNA concentration
ktr  : kinetic konstant (transcription)
a    : constitutive portion, 0 ≤ a < 1
[S]  : inducer (α=+1) / repressor (α=−1) concentration
K    : hill constant
n    : hill coefficient
α    : α=+1 for induction, α=−1 for repression
dM   : degradation konstant for mRNA

Finally, translation is usually modelled like this:

d[P]/dt = ktl[M] − dP[P]

[P]  : product (protein) concentration
[M]  : mRNA concentration
ktl  : kinetic konstant (translation)
dP   : degradation konstant for protein P
Personal tools
Past/present/future years