
FACS

- Fluorescence Activated Cell Sorter
- Late 60's early 70's
- Medical applications

Flow Cytometry : principle

FACS

FACSAria

FACSCalibur

FACS

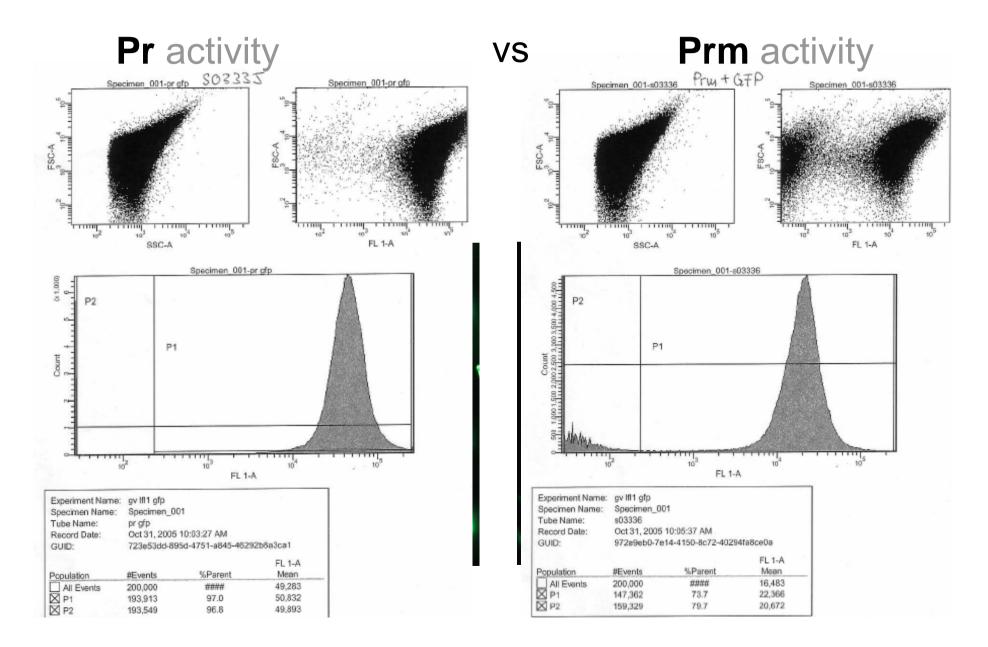
FACSAria

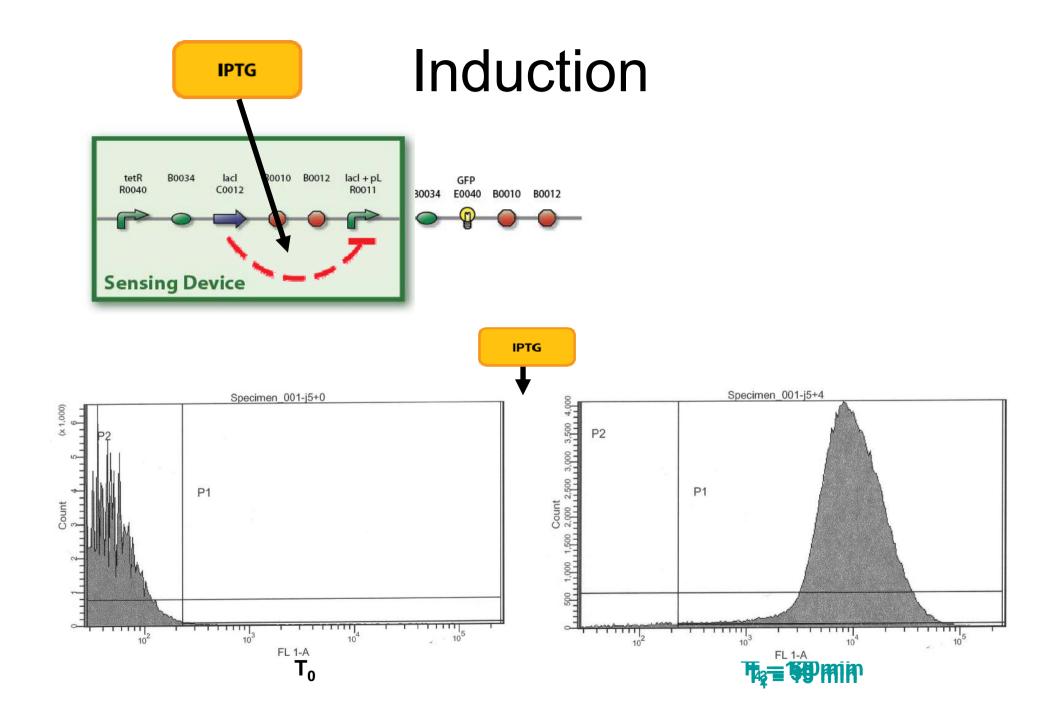
http://www.bdbiosciences.com/video/BD_FACSAriaTM_high.mov

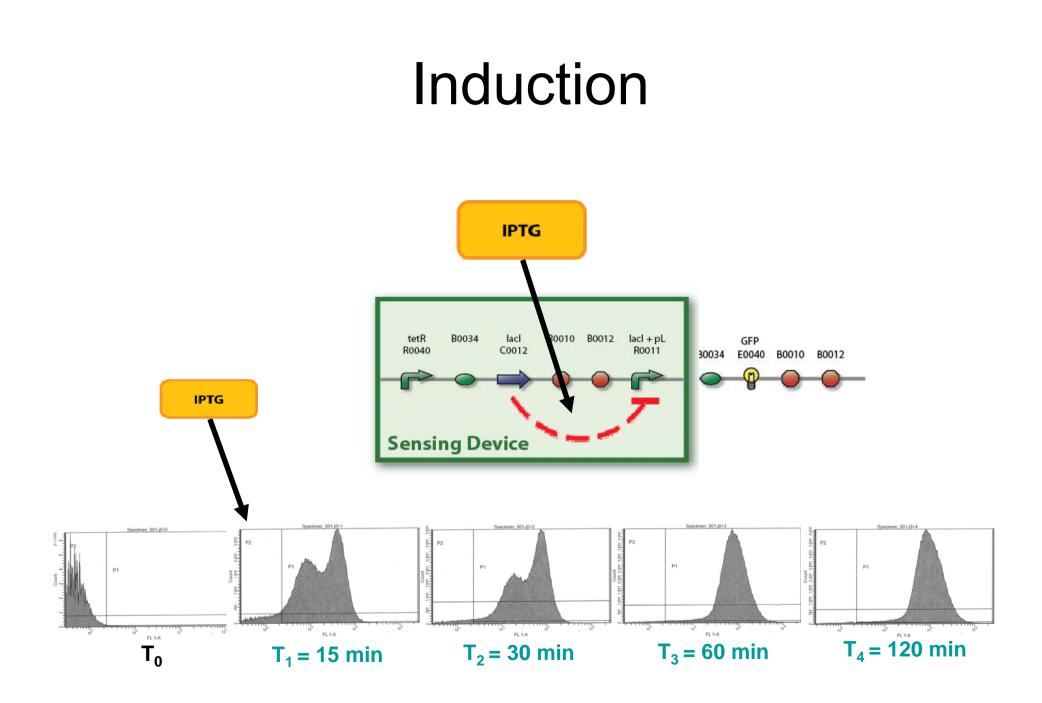
- Emission : 3 lasers : 488nm, 633nm, 407nm
- Detection :
 - 5 wavelengths from 488nm laser
 - 2 wavelengths from 633nm laser
 - 2 wavelengths from 407nm laser

Flow Cytometry : applications

• Direct or indirect fluorescence (antibody conjugated to a fluorescent dye)

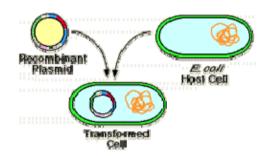

- DNA staining (propidium iodide) (sorting dead cells, tracking the cell division cycle)
- Cell division counts (CFSE binding to membrane and dividing equally at the division)
- Gene expression (reporter gene or labeling the product)


Selecting FPs


Table 1 Properties of the best FP variants ^{a,b}								
Class	Protein	Source laboratory (references)	Excitation ^o (nm)	Emission ^d (nm)	Brightness*	Photostability ^f	рКа	Oligomerization
Far-red	mPlum ⁹	Tsien (5)	590	649	4.1	53	<4.5	Monomer
Red	mCherry ^g	Tsien (4)	587	610	16	96	<4.5	Monomer
	tdTomato ⁹	Tsien (4)	554	581	95	98	4.7	Tandem dimer
	mStrawberry9	Tsien (4)	574	596	26	15	<4.5	Monomer
	J-Red ^h	Evrogen	584	610	8.8*	13	5.0	Dimer
	DsRed-monomer ^h	Clontech	556	596	3.5	16	4.5	Monomer
Orange	mOrange ⁹	Tsien (4)	548	562	49	9.0	6.5	Monomer
	mКO	MBL Intl. (10)	548	559	31*	122	5.0	Monomer
Yellow-green	mCitrine ⁱ	Tsien (16,23)	516	529	59	49	5.7	Monomer
	Venus	Miyawaki (1)	515	528	53*	15	6.0	Weak dimer ^j
	YPet9	Daugherty (2)	517	530	80*	49	5.6	Weak dimer ^j
	EYFP	Invitrogen (18)	514	527	51	60	6.9	Weak dimer ^j
Green	Emerald9	Invitrogen (18)	487	509	39	0.69 ^k	6.0	Weak dimer ^j
	EGFP	Clontech ^I	488	507	34	174	6.0	Weak dimer ^j
Cyan	CyPet	Daugherty (2)	435	477	18*	59	5.0	Weak dimer
	mCFPm ^m	Tsien (23)	433	475	13	64	4.7	Monomer
	Cerulean9	Piston (3)	433	475	27*	36	4.7	Weak dimer ^j
UV-excitable green	T-Sapphire ⁹	Griesbeck (6)	399	511	26*	25	4.9	Weak dimer ^j

An expanded version of this table, including a list of other commercially available FPs, is available as Supplementary Table 1. ^bThe mutations of all common AFPs relative to the wild-type protein are available in Supplementary Table 3. Major excitation peak. Major emission peak. Product of extinction coefficient and quantum yield at pH 7.4 measured or confirmed (indicated by *) in our laboratory under ideal maturation conditions, in (mM * cm)-1 (for comparison, free fluorescein at pH 7.4 has a brightness of about 69 (mM * cm)-1). Time for bleaching from an initial emission rate of 1,000 photons/s down to 500 photons/s (t_{1/2}: for comparison, fluorescein at pH 8.4 has t_{1/2} of 5.2 s); data are not indicative of photostability under focused laser illumination. 9Brightest in spectral class. Whot recommended (dim with poor folding at 37 *C). Citrine YFP with A206K mutation; spectroscopic properties equivalent to Citrine. JCan be made monomeric with A206K mutation. *Emerald has a pronounced fast bleaching component that leads to a very short time to 50% bleach. Its photostability after the initial few seconds, however, is comparable to that of EGFP. Formerly sold by Clontech, no longer commercially available. mECFP with A206K mutation; spectroscopic properties equivalent to ECFP.

Promoter activity

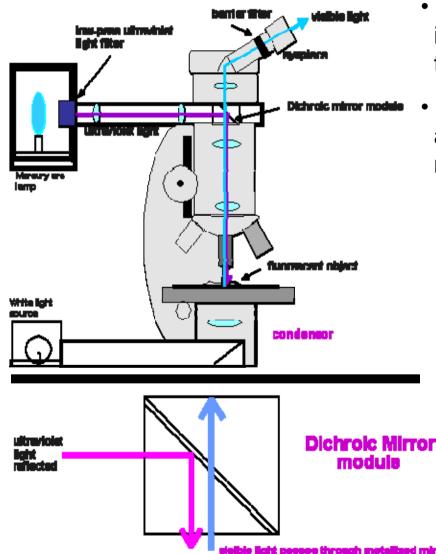


How does a FACS experiment look like...

1. Transformation

2. Inoculation of preculture from single colony

3. Growth of the culture (ev. induction)



- 4. Sample preparation (spin, wash, filter)
- 5. Go for FACS!!!

Fluorescence microscope

EPI-ILLUMINATION SYSTEM

- Fluorescence microscope uses high intensity light to illuminate the sample and to excite fluorescence.
- **Dichroic mirror** used to separate excitation and emission light paths (excitation light is reflected; emission passes through)

Excitation filter:

- placed in excitation path prior to mirror
- to select the excitation wavelength

Emission filter:

- placed in emission path prior to mirror
- to specifically select the emission λ of light emitted from the sample