iGEM Jamboree MIT – Nov 4th 2006

Engineering a Molecular Predation Oscillator

iGEM 2006 @ Imperial

Electrical Engineer

Biologists

Biomedical Engineers

Biochemists

Imperial College

Project Ideas

Oscillator

- Feasibility
- Originality of Design
- BioBrick Availability
- Future Impact

What is an Oscillator?

Our Definition

Device producing a periodic variation in time of a measurable quantity, e.g. amplitude.

Engineering

Biology

The Engineering Approach

Specifications

Design

Testing/Validation

Stand

Fertified

actice

Implementation

Modelling

Imperial College

The Main Challenges

Main challenges of past oscillators:

- Unstable
- Noisy
- Inflexible

typical engineering

oscillator

- Sustained Oscillations Periods
- Sight Signal to Noise Ratio
- · Contibilian Costen labors Amplitude and Frequency Standardized Device for
- Easy Connectiv
- **Easy Connectivity**

Figure Reference: Michael B. Elowitz & Stanislas Leibler Nature 2000

Our Initial Design Ideas

Based on

- Large populations of molecules to reduce influence of noise
- Oscillations due to population dynamics
- A well characterized model

Molecular Predator - Prey

The Lotka-Volterra Model

Prey Growth

Prey Killing by Predator

$$\frac{dV_{t}}{dt}$$

Predator Growth

Predator Death

Typical LV Simulations

Required Biochemical Properties

Self promoted expression of A

Degradation of A by B

Expression of B promoted by AB interaction

Degradation of B

dt

Molecular System

Imperial College

pTet

BBa_F2620

Quorum sensing/quenching

AHL->Pops Receiver

BioBricks available

BBa_C0062	Forms a complex with AHL to activate pLux	BBa_C0061	Makes AHL
pLux BBa_R0062	pLux Promoter	BBa_C0160	Degrades AHL

Imperial College

pLux

Designing the Predator Generator

Required Dynamic

Expression of B promoted by AB interaction

Degradation of A by B

Degradation of B

Useful BioBricks

Natural degradation

Final Construct

Imperial College

System Overview

AHL

Prey Generator Cell

Pool of AHL will oscillate

Predator Generator Cell

Imperial College

Full System set-up

Prey molecule generator

Predator molecule generator

Cell population Input signal Change in population ratio tim е [AHL] Output signal tim

Path to Our Goal

Self promoted expression of AHL

Degradation of AHL by aiiA

Degradation of AHL

Expression of LuxR

_

Degradation of LuxR

Expression of aiiA

Self promoted expression of AHL

Degradation
of AHL by
aiiA

Degradation of AHL

 $\frac{d[LuxR]}{dt}$

Expression of LuxR

_

Degradation of LuxR

 $\frac{d[aiiA]}{dt}$

Expression of aiiA

_

Gene Expression

$$\frac{d[AHL]}{dt}$$

$$\frac{a[AHL]}{a_0 + [AHL]}$$

Degradation of AHL by aiiA

Degradation of AHL

$$\frac{d[LuxR]}{dt}$$

$$\frac{c[AHL[LuxR]}{c_0 + [AHL[LuxR]]}$$

Degradation of LuxR

$$\frac{d[aiiA]}{dt}$$

$$\frac{c[AHL]LuxR]}{c_0 + [AHL]LuxR]}$$

_

Gene Expression

Enzymatic Reaction

$$\frac{d[AHL]}{dt}$$

$$\frac{a[AHL]}{a_0 + [AHL]}$$

$$\frac{b[aiiA]AHL}{b_0 + [AHL]}$$

Degradation of AHL

$$\frac{d[LuxR]}{dt}$$

$$\frac{c[AHL]LuxR]}{c_0 + [AHL]LuxR]}$$

Degradation of LuxR

$$\frac{d[aiiA]}{dt}$$

$$\frac{c[AHL]LuxR]}{c_0 + [AHL]LuxR]}$$

Gene Expression

Enzymatic Reaction

Degradation

$$\frac{d[AHL]}{dt}$$

$$\frac{a[AHL]}{a_0 + [AHL]}$$

$$\frac{b[aiiA]AHL}{b_0 + [AHL]}$$

$$\frac{d[LuxR]}{dt}$$

$$\frac{c[AHL[LuxR]}{c_0 + [AHL[LuxR]]}$$

$$d_1 LuxR$$

$$\frac{d[aiiA]}{dt}$$

$$\frac{c[AHL]LuxR]}{c_0 + [AHL]LuxR]}$$

$$d_2[aiiA]$$

Full System Simulations

Typical System Behaviours

Oscillations with limit cycles

No oscillations

Population dependent

$$\frac{d[AHL]}{dt}$$

ene Expression

$$\begin{array}{c}
a AHL \\
a_0 + AHL
\end{array}$$

Enzymatic Reaction

$$b \underbrace{aiiA}_{AHL}$$

$$b_0 + \underbrace{AHL}$$

Degradation

$$\frac{d[LuxR]}{dt}$$

$$\begin{array}{c} c AHL LuxR \\ \hline c_0 & AHL LuxR \end{array}$$

$$\frac{d[aiiA]}{dt}$$

$$\frac{c[AHL]LuxR]}{c_0 + [AHL]LuxR]}$$

_

Wash-out related

Constant

Imperial College

Path to Our Goal

Breaking Down the Complexity

Characterization Predator Sensing

Test part

Predictive model transfer function

Experimental data

Experimental Data

Characterization Predator Sensing

Test part

Predictive model transfer function

Experimental data

Fitting model to data

Parameter extractions

Average with variance and curve fitting

Path to Our Goal

Contributions to the Registry

Functional Parts

Final Prey J37015

Sensing Prey T9002

Sensing Predator J37016

Cre/Lox J37027

Built Sequenced Tested Characterized Documented

Intermediate Parts

J37019

J37023

Built Sequenced

Our Wiki

- Documentation
- Communication
- Organization

http://openwetware.org/wiki/IGEM:IMPERIAL/2006

Thank You

Imperial College London

Acknowledgements:

- Prof. Tony Cass
- Dr. Anna Radomska
- Dr. Rupert Fray
- Dr. David Leak
- Dr. Mauricio Barahona
- Dr. Danny O'Hare
- Dr. Geoff Baldwin
- Susan E. Wryter
- David Featherbe
- Ciaran Mckeown
- James Mansfield

Funding:

- European Commission
- Imperial College Deputy Rectors Fund
- Faculty of Engineering
- Faculty of Natural Sciences

