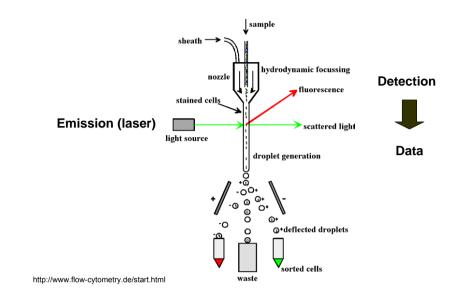
FACS

- Fluorescence Activated Cell Sorter
- Late 60's early 70's
- Medical applications

FACS


FACSAria

FACSCalibur

Flow Cytometry: principle

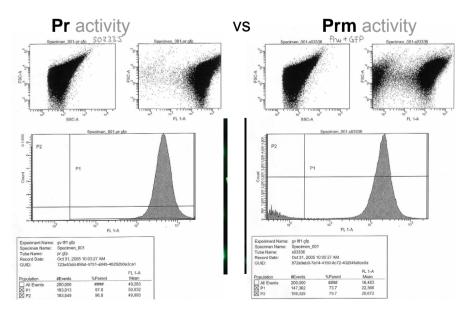
FACS

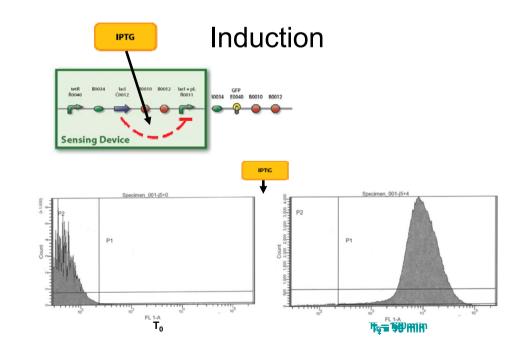
FACSAria

http://www.bdbiosciences.com/video/BD_FACSAriaTM_high.mov

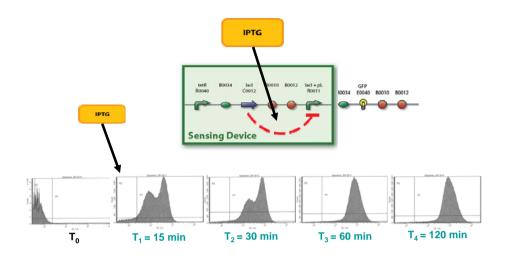
- Emission: 3 lasers: 488nm, 633nm, 407nm
- Detection :
 - 5 wavelengths from 488nm laser
 - 2 wavelengths from 633nm laser
 - 2 wavelengths from 407nm laser

Flow Cytometry: applications

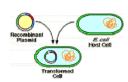

- Direct or indirect fluorescence (antibody conjugated to a fluorescent dye)
- DNA staining (propidium iodide) (sorting dead cells, tracking the cell division cycle)
- Cell division counts (CFSE binding to membrane and dividing equally at the division)
- Gene expression (reporter gene or labeling the product)


Selecting FPs

Class	Protein	Source laboratory (references)	Excitation ^o (nm)	Emission ^d (nm)	Brightness*	Photostability ^f	рКа	Oligomerization
Far-red	mPlum ⁹	Tsien (5)	590	649	4.1	53	<4.5	Monomer
Red	mCherry9	Tsien (4)	587	610	16	96	<4.5	Monomer
	tdTomato ⁹	Tsien (4)	554	581	95	98	4.7	Tandem dimer
	mStrawberry9	Tsien (4)	574	596	26	15	<4.5	Monomer
	J-Red ^h	Evrogen	584	610	8.8*	13	5.0	Dimer
	DsRed-monomerh	Clontech	556	586	3.5	16	4.5	Monomer
Orange	m0range ⁹	Tsien (4)	548	562	49	9.0	6.5	Monomer
	mKO	MBL Intl. (10)	548	559	31*	122	5.0	Monomer
Yellow-green	mCitrine ⁱ	Tsien (16,23)	516	529	59	49	5.7	Monomer
	Venus	Miyawaki (1)	515	528	53*	15	6.0	Weak dimer
	YPet9	Daugherty (2)	517	530	80*	49	5.6	Weak dimeri
	EYFP	Invitrogen (18)	514	527	51	60	6.9	Weak dimer ^j
Green	Emerald9	Invitrogen (18)	487	509	39	0.69k	6.0	Weak dimeri
	EGFP	Clontech ^I	488	507	34	174	6.0	Weak dimer ^j
Cyan	CyPet	Daugherty (2)	435	477	18*	59	5.0	Weak dimeri
	mCFPm ^m	Tsien (23)	433	475	13	64	4.7	Monomer
	Cerulean9	Piston (3)	433	475	27*	36	4.7	Weak dimeri
UV-excitable green	T-Sapphire ⁹	Griesbeck (6)	399	511	26*	25	4.9	Weak dimer


An expanded version of this clabs, including a list of other commercially available IPs, is available as Supplementary Table 1. *The mutations of all common APps relative to the wild-type protein are available in Supplementary Table 3. *Major excitation peak. *Major entition peak. *Phoduct of extinction coefficient and quantum yield at pH 7.4 measured or confirmed (indicated by *) in our laboratory under ideal mutation conditions, in (infl **cm). If for emparation, field inscrease in a pH 7.4 has brigger 65.2 *S. data are not indicated by *The out of the peak of t

Promoter activity

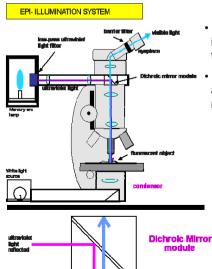


Induction

How does a FACS experiment look like...

1. Transformation

2. Inoculation of preculture from single colony


3. Growth of the culture (ev. induction)

- 4. Sample preparation (spin, wash, filter)
- 5. Go for FACS!!!

Fluorescence microscope

- Fluorescence microscope uses high intensity light to illuminate the sample and to excite fluorescence.
- **Dichroic mirror** used to separate excitation and emission light paths (excitation light is reflected; emission passes through)

Excitation filter:

- placed in excitation path prior to mirror
- to select the excitation wavelength

Emission filter:

- · placed in emission path prior to mirror
- to specifically select the emission λ of light emitted from the sample