Template:ETH Modeling Formulas
From 2006.igem.org
(Difference between revisions)
m (-'s == genitive, -s == plural) |
m |
||
Line 52: | Line 52: | ||
[P]<sub> </sub>: product (protein) concentration | [P]<sub> </sub>: product (protein) concentration | ||
[M]<sub> </sub>: mRNA concentration | [M]<sub> </sub>: mRNA concentration | ||
- | k<sub>tl</sub> : kinetic | + | k<sub>tl</sub> : kinetic constant (translation) |
- | d<sub>P </sub> : degradation | + | d<sub>P </sub> : degradation constant for protein P |
References: | References: | ||
* ''Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations''. Emery D. Conrad and John J. Tyson<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press]. | * ''Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations''. Emery D. Conrad and John J. Tyson<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press]. | ||
* ''Synthetic Gene Regulatory Systems''. Mads Kaern and Ron Weiss<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press]. | * ''Synthetic Gene Regulatory Systems''. Mads Kaern and Ron Weiss<br/>in ''System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.''<br/>Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press]. |
Revision as of 11:21, 20 November 2006
To get our models into a form which can be simulated, we needed to transform the wiring diagrams into a set of ODEs (ordinary differential equations), which in our case will be non-linear.
For every concerned species X, we write
d[X]/dt = production - consumption
For enzymatic transformation of substrate S into product P (catalyzed by enzyme E), we write
k+1 k2 S + E <==> E•S --> P + E k−1 d[S]/dt = −k+1[S][E] + k−1[E•S] − dS[S] d[E]/dt = −k+1[S][E] + k−1[E•S] + k2[S•E] − dE[E] d[P]/dt = + k2[E•S] − dP[P] [S] : substrate concentration [E] : enzyme conc. [E•S] : concentration of enzyme-substrate complex [P] : product concentration kinetic constants: kk+1 : building enzyme-substrate complex (forward) kk−1 : resolving enzyme-substrate complex (backward) k2 : product formation dXXX : degradation constants
For constitutive transcription, we have constant production rate and simply write
d[M]/dt = ktr•u − dM[M] [M] : mRNA concentration ktr : kinetic konstant (transcription) u : system input, e.g. transcription rate (≅PoPS) dM : degradation konstant for mRNA
A transcriptional regulatory module can be described by and ODE of the following form:
1 d[M]/dt = ktr ( a + −−−−−−−−−−−−−− ) − dM[M] 1 + (K/[S])α•n [M] : mRNA concentration ktr : kinetic konstant (transcription) a : constitutive portion, 0 ≤ a < 1 [S] : inducer (α=+1) / repressor (α=−1) concentration K : hill constant n : hill coefficient α : α=+1 for induction, α=−1 for repression dM : degradation konstant for mRNA
Finally, translation is usually modeled like this:
d[P]/dt = ktl[M] − dP[P] [P] : product (protein) concentration [M] : mRNA concentration ktl : kinetic constant (translation) dP : degradation constant for protein P
References:
- Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations. Emery D. Conrad and John J. Tyson
in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.
Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press]. - Synthetic Gene Regulatory Systems. Mads Kaern and Ron Weiss
in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts.
Editors: Zoltan Szallasi, Jorg Stelling and Vipul Periwal, [http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10923 MIT Press].